高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏信号结构性噪声干扰下的感知矩阵优化

李如春 程云霄 覃亚丽

李如春, 程云霄, 覃亚丽. 稀疏信号结构性噪声干扰下的感知矩阵优化[J]. 电子与信息学报, 2019, 41(4): 911-916. doi: 10.11999/JEIT180513
引用本文: 李如春, 程云霄, 覃亚丽. 稀疏信号结构性噪声干扰下的感知矩阵优化[J]. 电子与信息学报, 2019, 41(4): 911-916. doi: 10.11999/JEIT180513
Ruchun LI, Yunxiao CHENG, Yali QIN. Sensing Matrix Optimization for Sparse Signal under Structured Noise Interference[J]. Journal of Electronics & Information Technology, 2019, 41(4): 911-916. doi: 10.11999/JEIT180513
Citation: Ruchun LI, Yunxiao CHENG, Yali QIN. Sensing Matrix Optimization for Sparse Signal under Structured Noise Interference[J]. Journal of Electronics & Information Technology, 2019, 41(4): 911-916. doi: 10.11999/JEIT180513

稀疏信号结构性噪声干扰下的感知矩阵优化

doi: 10.11999/JEIT180513
基金项目: 国家自然科学基金(61675184)
详细信息
    作者简介:

    李如春:女,1968年生,副教授,研究方向为多媒体信号处理

    程云霄:男,1994年生,硕士生,研究方向为压缩感知信号处理

    覃亚丽:女,1963年生,教授,研究方向为光学信号处理

    通讯作者:

    程云霄 com_xd@163.com

  • 中图分类号: TN919.4

Sensing Matrix Optimization for Sparse Signal under Structured Noise Interference

Funds: The National Natural Science Foundation of China (61675184)
  • 摘要:

    针对具有结构性噪声干扰的稀疏信号处理问题,该文提出一种基于贝叶斯理论的感知矩阵优化设计方法。结合具有加性干扰的稀疏信号模型,通过对感知矩阵进行能量约束,最小化信号的后验协方差矩阵的迹,实现感知矩阵的优化设计。仿真不同信号稀疏度和重构算法时,感知矩阵优化对信号重构误差和重构时间的影响;分析信号先验信息存在偏差时,感知矩阵优化对重构效果的影响。仿真结果表明,优化后的感知矩阵能够更好地获取稀疏信号中的重要信息,信号重构精度的均方误差减小约15~25 dB,重构时间减少约40%。

  • 图  1  能量约束分析

    图  2  稀疏度分析

    图  3  不同重构算法的重构误差对比

    图  4  不同重构算法的重构时间对比

    图  5  信号先验信息精确度对重构性能影响

    图  6  干扰先验信息精确性对重构性能影响

    图  7  噪声分量先验信息精确性对重构性能的影响

  • FOUCART S. Flavors of compressive sensing[C]. International Conference Approximation Theory, San Antonio, USA, 2016: 61–104.
    NOUASRIA H and ET-TOLBA M. A novel sensing matrix for cluster structured sparse signals[C]. International Wireless Communications and Mobile Computing Conference, Valencia, Spain, 2017: 998–1003.
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356 doi: 10.1109/TSP.2007.914345
    FUHRMANN D R. One-step optimal measurement selection for linear Gaussian estimation problems[C]. International Waveform Diversity and Design Conference. Pisa, Italy, 2007: 224–227.
    ZELNIK-MANOR L, ROSENBLUM K, and ELDAR Y C. Sensing matrix optimization for block-sparse decoding[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4300–4312 doi: 10.1109/TSP.2011.2159211
    DAS A. A Bayesian sparse-plus-low-rank matrix decomposition method for direction-of-arrival tracking[J]. IEEE Sensors Journal, 2017, 17(15): 4894–4902 doi: 10.1109/JSEN.2017.2715347
    NANNURU S, GERSTOFT P, and GEMBA K L. Sparse Bayesian learning with uncertain sensing matrix[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3964–3968.
    YANG Linxiao, FANG Jun, and LI Hongbin. Sparse Bayesian dictionary learning with a Gaussian hierarchical model[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2564–2568.
    FISHER R A S. Theory of Statistical Estimation[M]. Institute of Mathematics, University of Tsukuba, 2008: 51–65.
    PETERSEN K B and PEDERSEN M S. The Matrix Cookbook[M]. Technical University of Denmark, 2008: 18–19.
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. World Book Inc, 2013: 243–249.
    WIPF D P and RAO B D. Sparse Bayesian Learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153–2164 doi: 10.1109/TSP.2004.831016
    SCHNITER P, POTTER L C, and ZINIEL J. Fast Bayesian matching pursuit[C]. Information Theory and Applications Workshop, San Diego, USA, 2008: 326–333.
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666 doi: 10.1109/TIT.2007.909108
    KAMILOV U. Parallel proximal algorithm for anisotropic total variation minimization[J]. IEEE Transactions on Image Processing, 2016, 26(2): 539–548 doi: 10.1109/TIP.2016.2629449
  • 加载中
图(7)
计量
  • 文章访问数:  1890
  • HTML全文浏览量:  732
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-25
  • 修回日期:  2018-11-13
  • 网络出版日期:  2018-11-22
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回