高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有源欺骗干扰环境下的DOA估计

王珊珊 刘峥 谢荣 冉磊

王珊珊, 刘峥, 谢荣, 冉磊. 有源欺骗干扰环境下的DOA估计[J]. 电子与信息学报, 2019, 41(5): 1040-1046. doi: 10.11999/JEIT180488
引用本文: 王珊珊, 刘峥, 谢荣, 冉磊. 有源欺骗干扰环境下的DOA估计[J]. 电子与信息学报, 2019, 41(5): 1040-1046. doi: 10.11999/JEIT180488
Shanshan WANG, Zheng LIU, Rong XIE, Lei RAN. DOA Estimation Under Active Deception Jamming Environment[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1040-1046. doi: 10.11999/JEIT180488
Citation: Shanshan WANG, Zheng LIU, Rong XIE, Lei RAN. DOA Estimation Under Active Deception Jamming Environment[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1040-1046. doi: 10.11999/JEIT180488

有源欺骗干扰环境下的DOA估计

doi: 10.11999/JEIT180488
基金项目: 博士后创新人才支持计划(BX20180240)
详细信息
    作者简介:

    王珊珊:女,1996年生,博士生,研究方向为认知雷达信号处理技术

    刘峥:男,1964年生,教授,博士生导师,研究方向为雷达信号处理的理论与系统设计、雷达精确制导技术、多传感器信息融合等

    谢荣:男,1982年生,副教授,研究方向为阵列信号处理、雷达天线理论等

    冉磊:男,1989年生,博士后,研究方向为雷达成像技术

    通讯作者:

    刘峥 lz@xidian.edu.cn

  • 中图分类号: TN911.7

DOA Estimation Under Active Deception Jamming Environment

Funds: The National Postdoctoral Program for Inno-vative Talents(BX20180240)
  • 摘要:

    针对有源欺骗干扰环境下基于小样本的DOA估计问题,该文提出自适应极化滤波(APF)联合块稀疏贝叶斯学习(BSBL)算法的DOA估计方法。首先,通过APF抑制干扰能量,提高信干比。然后,建立有源欺骗干扰环境下的稀疏贝叶斯模型,基于相邻快拍相关性,利用BSBL算法进行DOA估计。仿真和实测数据处理结果表明,所提方法降低了干扰对BSBL算法的影响,且与APF联合子空间类算法或最大似然算法(ML)相比,具有更高的空间分辨率和DOA估计精度。

  • 图  1  APF联合BSBL算法的测角性能分析

    图  2  样本数为5时DOA估计结果图

    图  3  干扰场景图

    图  4  干扰和弹载雷达方位角和仰角分布图

    图  5  实测数据测角均方根误差图

  • ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
    LI Zheng, TAI Ning, WANG Chao, et al. A study on blanket noise jamming to LFM pulse compression radar[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242411.
    WU Xiaohuan, ZHU Weiping, and YAN Jun. A fast gridless covariance matrix reconstruction method for one- and two-dimensional direction-of-arrival estimation[J]. IEEE Sensors Journal, 2017, 17(15): 4916–4927. doi: 10.1109/JSEN.2017.2709329
    贾伟娜, 刘顺兰. 模拟退火遗传算法在DOA估计技术中的应用[J]. 计算机工程与应用, 2014, 50(12): 266–270. doi: 10.3778/j.issn.1002-8331.1206-0247

    JIA Weina and LIU Shunlan. Application of simulated annealing genetic algorithm in DOA estimation technique[J]. Computer Engineering and Applications, 2014, 50(12): 266–270. doi: 10.3778/j.issn.1002-8331.1206-0247
    ZHANG T T, LU Y L, and HUI H T. Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1215–1221. doi: 10.1109/TAES.2008.4655375
    WAN Liangtian, HAN Guangjie, JIANG Jinfang, et al. DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems[J]. IEEE Systems Journal, 2017, 11(1): 41–49. doi: 10.1109/JSYST.2015.2445052
    蔡晶晶, 宗汝, 蔡辉. 基于空域平滑稀疏重构的DOA估计算法[J]. 电子与信息学报, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538

    CAI Jingjing, ZONG Ru, and CAI Hui. DOA estimation via sparse representation of the smoothed array covariance matrix[J]. Journal of Electronics &Information Technology, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538
    AL-SHOUKAIRI M, SCHNITER P, and RAO B D. A GAMP-based low complexity sparse Bayesian learning algorithm[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 294–308. doi: 10.1109/TSP.2017.2764855
    HOU Huijun and MAO Xingpeng. Oblique projection and sparse reconstruction based DOA estimation of hybrid completely and partially polarized signals with arbitrary polarimetric arrays[C]. Proceedings of the 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, Canada, 2017: 1–4. doi: 10.1109/CCECE.2017.7946799.
    ZHEN Jiaqi and WANG Zhifang. DOA estimation method for wideband signals by sparse recovery in frequency domain[J]. Journal of Systems Engineering and Electronics, 2017, 28(5): 871–878. doi: 10.21629/JSEE.2017.05.06
    WANG Yi, CHEN Baixiao, ZHENG Yisong, et al. Joint power distribution and direction of arrival estimation for wideband signals using sparse Bayesian learning[J]. IET Radar, Sonar & Navigation, 2017, 11(1): 52–59. doi: 10.1049/iet-rsn.2015.0610
    王洪雁, 房云飞, 裴炳南. 基于矩阵补全的二阶统计量重构DOA估计方法[J]. 电子与信息学报, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826

    WANG Hongyan, FANG Yunfei, and PEI Bingnan. Matrix completion based second order statistic reconstruction DOA estimation method[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826
    ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912–926. doi: 10.1109/JSTSP.2011.2159773
    WANG Lu, ZHAO Lifan, RAHARDJA S, et al. Alternative to extended block sparse Bayesian learning and its relation to pattern-coupled sparse Bayesian learning[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2759–2771. doi: 10.1109/TSP.2018.2816574
    HUANG Qinghua, ZHANG Guangfei, and FANG Yong. DOA estimation using block variational sparse Bayesian learning[J]. Chinese Journal of Electronics, 2017, 26(4): 768–772. doi: 10.1049/cje.2017.04.004
    宫健, 楼顺天, 张伟涛. 一种强干扰条件下阵列天线波达方向估计方法[J]. 西安电子科技大学学报: 自然科学版, 2018, 45(1): 168–172. doi: 10.3969/j.issn.1001-2400.2018.01.030

    GONG Jian, LOU Shuntian, and ZAHNG Weitao. Method of array antenna DOA under strong interference presence[J]. Journal of Xidian University, 2018, 45(1): 168–172. doi: 10.3969/j.issn.1001-2400.2018.01.030
    MA Jiazhi, SHI Longfei, LI Yongzhen, et al. Angle estimation of extended targets in main-lobe interference with polarization filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 169–189. doi: 10.1109/TAES.2017.2649783
    NATHANSON F E. Adaptive circular polarization[C]. IEEE International Radar Conference, Arlington, USA, 1975: 221–225.
    王雪松, 汪连栋, 肖顺平, 等. 自适应极化滤波器的理论性能分析[J]. 电子学报, 2004, 32(8): 1326–1329. doi: 10.3321/j.issn:0372-2112.2004.08.023

    WANG Xuesong, WANG Liandong, XIAO Shunping, et al. Theoretical performance analysis of adaptive polarization filters[J]. Acta Electronica Sinica, 2004, 32(8): 1326–1329. doi: 10.3321/j.issn:0372-2112.2004.08.023
    任博, 罗笑冰, 邓方刚, 等. 应用极化聚类中心设计快速自适应极化滤波器[J]. 国防科技大学学报, 2015, 37(4): 87–92. doi: 10.11887/j.cn.201504015

    REN Bo, LUO Xiaobing, DENG Fanggang, et al. Design of fast adaptive polarization filters utilizing polarizing cluster center[J]. Journal of National University of Defense Technology, 2015, 37(4): 87–92. doi: 10.11887/j.cn.201504015
  • 加载中
图(5)
计量
  • 文章访问数:  2549
  • HTML全文浏览量:  768
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-21
  • 修回日期:  2019-01-08
  • 网络出版日期:  2019-01-25
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回