高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FMCW雷达的多维参数手势识别算法

王勇 吴金君 田增山 周牧 王沙沙

王勇, 吴金君, 田增山, 周牧, 王沙沙. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822-829. doi: 10.11999/JEIT180485
引用本文: 王勇, 吴金君, 田增山, 周牧, 王沙沙. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822-829. doi: 10.11999/JEIT180485
Yong WANG, Jinjun WU, Zengshan TIAN, Mu ZHOU, Shasha WANG. Gesture Recognition with Multi-dimensional Parameter Using FMCW Radar[J]. Journal of Electronics & Information Technology, 2019, 41(4): 822-829. doi: 10.11999/JEIT180485
Citation: Yong WANG, Jinjun WU, Zengshan TIAN, Mu ZHOU, Shasha WANG. Gesture Recognition with Multi-dimensional Parameter Using FMCW Radar[J]. Journal of Electronics & Information Technology, 2019, 41(4): 822-829. doi: 10.11999/JEIT180485

基于FMCW雷达的多维参数手势识别算法

doi: 10.11999/JEIT180485
基金项目: 国家自然科学基金(61771083, 61704015),长江学者和创新团队发展计划基金(IRT1299),重庆市科委重点实验室专项经费基金,重庆市基础与前沿研究计划基金(cstc2017jcyjAX0380, cstc2015jcyjBX0065),重庆市高校优秀成果转化基金(KJZH17117),重庆市教委科学技术研究项目(KJ1704083)
详细信息
    作者简介:

    王勇:男,1987年生,讲师,研究方向为无线通信、能效优化、室内定位、深度学习理论等

    吴金君:男,1994年生,硕士生,研究方向为手势识别和深度学习技术

    田增山:男,1968年生,教授,博士生导师,研究方向为移动通信、个人通信、GPS及蜂窝网定位技术等

    周牧:男,1984年生,教授,研究方向为无线定位与导航技术、信号侦察与检测技术、凸优化与深度学习理论等

    王沙沙:女,1992年生,硕士生,研究方向为深度学习技术和雷达信号处理

    通讯作者:

    吴金君 xnwujj@foxmail.com

  • 中图分类号: TN958; TN98

Gesture Recognition with Multi-dimensional Parameter Using FMCW Radar

Funds: The National Natural Science Foundation of China (61771083, 61704015), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of Chongqing Key Laboratory (CSTC), The Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117), The Scientific and Technological Research Foundation of Chongqing Municipal Education Commission (KJ1704083)
  • 摘要:

    该文提出一种基于调频连续波(FMCW)雷达多维参数的卷积神经网络手势识别方法。通过对雷达信号进行时频分析,估计手势目标的距离、多普勒和角度参数,构建出手势动作的多维参数数据集。同时,为了进行手势特征提取和精确分类,提出多分支网络结构和高维特征融合的方案,设计出具有端到端结构的RDA-T多维参数卷积神经网络。实验结果表明,结合手势动作的距离、多普勒和角度信息进行多维参数学习,所提方法有效解决了单维参数手势识别方法中手势描述信息量低的问题,且手势识别准确率相较于单参数方法提高了5%~8%。

  • 图  1  数据集中6种手势对应RTM, DTM和ATM

    图  2  RDA-T卷积神经网络结构图

    图  3  RTM, DTM和ATM准确率曲线

    图  4  fc6, fc7层不同尺寸准确率比较

    图  5  RDA-T网络不同初始学习率准确率曲线

    图  6  不同学习衰减率交叉熵损失值比较

    图  7  多维参数数据集上不同方法准确率曲线比较

    表  1  不同帧数下的准确率比较结果(%)

    8帧数据集16帧数据集24帧数据集32帧数据集
    准确率70.379.788.395.3
    下载: 导出CSV

    表  2  手势分类混淆矩阵(%)

    预测类别
    前推后拉左滑右滑前后推拉左右滑动
    真实类别前推9004006
    后拉01000000
    左滑0098200
    右滑0209404
    前后推拉4000942
    左右滑动2000296
    下载: 导出CSV

    表  3  本文方法与其他方法准确率和算法复杂度对比

    网络结构数据集平均准确率(%)空间复杂度(106 Byte)时间复杂度(109 FLOPS)单个样本处理时间(ms)
    CNN[9]单分支网络RTM89.69.71.512.9
    DTM87.3
    ATM84.3
    VGG16-Net[14]单分支网络RTM89.3136.015.53.9
    DTM86.3
    ATM87.0
    本文单分支网络(单参数网络)RTM90.664.10.742.9
    DTM88.3
    ATM89.3
    CNN[9]多分支网络多维参数数据集91.626.64.505.6
    VGG16-Net[14]多分支网络92.0362.146.1610.3
    本文多分支网络(RDA-T网络)95.389.62.113.9
    下载: 导出CSV
  • LI Yunan, MIAO Qiguang, TIAN Kuan, et al. Large-scale gesture recognition with a fusion of RGB-D data based on the C3D model[C]. 2016 23rd International Conference on Pattern Recognition, Cancun, Mexico, 2016: 25–30.
    HE Yiwen, YANG Jianyu, SHAO Zhanpeng, et al. Salient feature point selection for real time RGB-D hand gesture recognition[C]. IEEE International Conference on Real-time Computing and Robotics, Okinawa, Japan, 2017: 103–108.
    ALMASRE M A and AL-NUAIM H. Recognizing Arabic Sign Language gestures using depth sensors and a KSVM classifie[C]. Computer Science and Electronic Engineering, Colchester, UK, 2016: 146–151.
    AUGUSTAUSKAS R and LIPNICKAS A. Robust hand detection using arm segmentation from depth data and static palm gesture recognition[C]. Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Bucharest, Romania, 2017, 2: 664–667.
    DEKKER B, JACOBS S, KOSSEN A S, et al. Gesture recognition with a low power FMCW radar and a deep convolutional neural network[C]. Radar Conference, Nuremberg, Germany, 2017: 163–166.
    MOLCHANOV P, GUPTA S, KIM K, et al. Multi-sensor system for driver's hand-gesture recognition[C]. Automatic Face and Gesture Recognition, Ljubljana, Slovenia, 2015, 1: 1–8.
    LIN J J, LI Yuanping, HSU W C, et al. Design of an FMCW radar baseband signal processing system for automotive application[J]. Springerplus, 2016, 5(1): 42–57 doi: 10.1186/s40064-015-1583-5
    LI Gang, ZHANG Rui, RITCHIE M, et al. Sparsity-driven micro-Doppler feature extraction for dynamic hand gesture recognition[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(2): 655–665 doi: 10.1109/TAES.2017.2761229
    ZHANG Shimeng, LI Gang, RITCHIE M, et al. Dynamic hand gesture classification based on radar micro-Doppler signatures[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
    KIM Y and TOOMAJIAN B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network[J]. IEEE Access, 2016, 4: 7125–7130 doi: 10.1109/ACCESS.2016.2617282
    MOLCHANOV P, GUPTA S, KIM K, et al. Short-range FMCW monopulse radar for hand-gesture sensing[C]. Radar Conference, Arlington, USA, 2015: 1491–1496.
    WANG Saiwen, SONG Jie, LIEN J, et al. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. Proceedings of the 29th Annual Symposium on User Interface Software and Technology, New York, USA, 2016: 851–860.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, Montreal, Canada, 2012: 1097–1105.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[OL]. https://arxiv.org/abs/1409. 1556, 2014.
    HE Kaiming, ZHANG Xianyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[OL]. https://arxiv.org/abs/1502.03167, 2015.
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
    TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497.
    MOLCHANOV P, GUPTA S, KIM K, et al. Hand gesture recognition with 3D convolutional neural networks[C]. Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 1–7.
    SIMONYAN K and ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]. Advances in Neural Information Processing Systems, Montreal, Canada, 2014: 568–576.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280 doi: 10.1109/TAP.1986.1143830
    HE Kaiming and SUN Jian. Convolutional neural networks at constrained time cost[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5353–5360.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  3562
  • HTML全文浏览量:  1268
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-21
  • 修回日期:  2018-08-30
  • 网络出版日期:  2018-09-13
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回