高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向OFDM的同时同频全双工双向高谱效中继方案

刘毅 吴炯 杨普 南海涵 张海林

刘毅, 吴炯, 杨普, 南海涵, 张海林. 面向OFDM的同时同频全双工双向高谱效中继方案[J]. 电子与信息学报, 2019, 41(2): 402-408. doi: 10.11999/JEIT180451
引用本文: 刘毅, 吴炯, 杨普, 南海涵, 张海林. 面向OFDM的同时同频全双工双向高谱效中继方案[J]. 电子与信息学报, 2019, 41(2): 402-408. doi: 10.11999/JEIT180451
Yi LIU, Jiong WU, Pu YANG, Haihan NAN, Hailin ZHANG. High Spectrum Efficiency Full-duplex Two-way Relay Scheme for OFDM[J]. Journal of Electronics & Information Technology, 2019, 41(2): 402-408. doi: 10.11999/JEIT180451
Citation: Yi LIU, Jiong WU, Pu YANG, Haihan NAN, Hailin ZHANG. High Spectrum Efficiency Full-duplex Two-way Relay Scheme for OFDM[J]. Journal of Electronics & Information Technology, 2019, 41(2): 402-408. doi: 10.11999/JEIT180451

面向OFDM的同时同频全双工双向高谱效中继方案

doi: 10.11999/JEIT180451
基金项目: 国家自然科学基金(61671341),数据链技术重点实验室开放基金(CLDL-20182412),国家111计划项目(B08038)
详细信息
    作者简介:

    刘毅:男,1978年生,教授,研究方向为宽带无线通信技术、空时编码与协作通信技术、通信对抗

    吴炯:男,1992年生,硕士生,研究方向为宽带无线通信技术、全双工通信技术

    杨普:男,1995年生,硕士生,研究方向为宽带无线通信技术、全双工通信技术

    南海涵:男,1996年生,硕士生,研究方向为宽带无线通信技术、全双工通信技术

    张海林:男,1963年生,教授,研究方向为宽带无线通信技术

    通讯作者:

    刘毅 yliu@xidian.edu.cn

  • 中图分类号: TN92

High Spectrum Efficiency Full-duplex Two-way Relay Scheme for OFDM

Funds: The National Natural Science Foundation of China (61671341), The Foundation of CETC Key Laboratory of Data Link Technology (CLDL-20182412), The National 111 Project (B08038)
  • 摘要:

    针对同时同频全双工双向中继网络,该文提出一种对中继剩余自干扰信号具有鲁棒性的双向中继传输方案。该文首先对中继剩余自干扰信号进行分析,将无限迭代的剩余自干扰信号建模成等效多径信号,并利用OFDM的循环前缀对抗等效多径现象,以降低中继剩余自干扰信号对系统传输性能的影响。在等效多径方案的基础上,以系统信干噪比最大化为目标,推导出全双工双向中继传输的最佳放大因子求解方法。最后,通过仿真验证所提出的双向中继传输方案的有效性。

  • 图  1  两跳全双工双向中继传输模型

    图  2  S2节点到S1节点的全双工中继等效多径示意图

    图  3  S1节点到S2节点的全双工中继等效多径示意图

    图  4  全双工双向中继传输中不同方案误码率性能随信噪比变化曲线

    图  5  全双工双向中继传输中不同方案误码率随中继节点剩余环路干扰变化曲线

    表  1  信号x1(1)和x2(1)在各节点处的传输情况

    时隙$i$01···$i$···
    ${r^{\left( 1 \right)}}(i)$${{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1)$${(\beta {{h}_{{\rm{li}}}})^1}({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$···${(\beta {{h}_{{\rm{li}}}})^i}({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$···
    ${t^{\left( 1 \right)}}(i)$0$\beta ({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$···${(\beta {{h}_{{\rm{li}}}})^{i - 1}}\beta ({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$···
    $y_{1}^{\left( 1 \right)}(i)$${{h}_{{\rm{12}}}}{x_2}(1)$$\beta {{h}_{1r}}{{h}_{2r}}{x_2}(1)$···${(\beta {{h}_{{\rm{li}}}})^{i - 1}}\beta {{h}_{1r}}{{h}_{2r}}{x_2}(1)$···
    $y_{2}^{\left( 1 \right)}(i)$${{h}_{{\rm{12}}}}{x_1}(1)$$\beta {{h}_{1r}}{{h}_{2r}}{x_1}(1)$···${(\beta {{h}_{{\rm{li}}}})^{i - 1}}\beta {{h}_{1r}}{{h}_{2r}}{x_1}(1)$···
    下载: 导出CSV
  • SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity—Part I: System description[J]. IEEE Transactions on Communications, 2003, 51(11): 1927–1938. doi: 10.1109/TCOMM.2003.818096
    SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity—Part II: Implementation aspects and performance analysis[J]. IEEE Transactions on Communications, 2003, 51(11): 1939–1948. doi: 10.1109/TCOMM.2003.819238
    KUMAR N, SINGYA P K, and BHATIA V. Performance analysis of orthogonal frequency division multiplexing-based cooperative amplify-and-forward networks with non-linear power amplifier over independently but not necessarily identically distributed Nakagami-m fading channels[J]. IET Communications, 2017, 11(7): 1008–1020. doi: 10.1049/iet-com.2016.0797
    NADERI S, JAVAN M R, and AREF A. Secrecy outage analysis of cooperative amplify and forward relaying in device to device communications[C]. 24th Iranian Conference on Electrical Engineering, Shiraz, Iran, 2016: 40–44.
    BOUTEGGUI M and MERAZKA F. Performance of source transmit antenna selection for MIMO cooperative communication system based DF protocol: Symbol error rate and diversity order[C]. International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, Morocco, 2017: 1–8.
    SHARMA S, ROY S D, and KUNDU S. Two way secure communication with two half-duplex DF relay[C]. TENCON 2017: IEEE Region 10 Conference, Penang, Malaysia, 2017: 869–874.
    ATAPATTU S, HE Yuanyuan, DHARMAWANSA P, et al. Impact of residual self-interference and direct-link interference on full-duplex relays[C]. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, SriLanka, 2017: 1–6.
    WATKINS G T, THOMPSON W, and HALLS D. Single antenna full duplex cancellation network for ISM band[C]. 2018 IEEE Radio and Wireless Symposium (RWS), Anaheim, USA, 2018: 21–24.
    DUARTE M and SABHARWAL A. Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results[C]. the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1558–1562.
    DUARTE M, DICK C, and SABHARWAL A. Experiment-driven characterization of full-duplex wireless systems[J]. IEEE Transactions on Wireless Communications, 2012, 11(12): 4296–4307. doi: 10.1109/TWC.2012.102612.111278
    RIIHONEN T, WERNER S, and WICHMAN R. Mitigation of loopback self-interference in full-duplex MIMO relays[J]. IEEE Transactions on Signal Process, 2011, 59(12): 5983–5993. doi: 10.1109/TSP.2011.2164910
    RIIHONEN T, WERNER S, and WICHMAN R. Optimized gain control for single-frequency relaying with loop interference[J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 2801–2806. doi: 10.1109/TWC.2009.080542
    LIU Yi, DAI Yue, and XIA Xianggen. SC-FDE based full-duplex relay communication robust to residual loop interference[J]. IEEE Wireless Communications Letters, 2017, 6(4): 538–541. doi: 10.1109/LWC.2017.2713381
    JIN Yuansheng, XIA Xianggen, and CHEN Yan. Full-duplex delay diversity relay transmission using bit-interleaved coded OFDM[J]. IEEE Transactions on Communications, 2017, 65(8): 3250–3258. doi: 10.1109/TCOMM.2017.2704109
    LIU Yi, XIA Xianggen, and ZHANG Hailin. Distributed space-time coding for full-duplex asynchronous cooperative communications[J]. IEEE Transactions on Wireless Communications, 2012, 11(7): 2680–2688. doi: 10.1109/TWC.2012.060212.112214
    LIU Yi, XIA Xianggen, and ZHANG Hailin. Distributed linear convolutional space-time coding for two-relay full-duplex asynchronous cooperative networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(12): 6406–6417. doi: 10.1109/TWC.2013.102313.130541
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2153
  • HTML全文浏览量:  699
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-11
  • 修回日期:  2018-10-10
  • 网络出版日期:  2018-11-02
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回