高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光照变化下基于逆向稀疏表示的视觉跟踪方法

王洪雁 邱贺磊 郑佳 裴炳南

王洪雁, 邱贺磊, 郑佳, 裴炳南. 光照变化下基于逆向稀疏表示的视觉跟踪方法[J]. 电子与信息学报, 2019, 41(3): 632-639. doi: 10.11999/JEIT180442
引用本文: 王洪雁, 邱贺磊, 郑佳, 裴炳南. 光照变化下基于逆向稀疏表示的视觉跟踪方法[J]. 电子与信息学报, 2019, 41(3): 632-639. doi: 10.11999/JEIT180442
Hongyan WANG, Helei QIU, Jia ZHENG, Bingnan PEI. Visual Tracking Method Based on Reverse Sparse Representation under Illumination Variation[J]. Journal of Electronics & Information Technology, 2019, 41(3): 632-639. doi: 10.11999/JEIT180442
Citation: Hongyan WANG, Helei QIU, Jia ZHENG, Bingnan PEI. Visual Tracking Method Based on Reverse Sparse Representation under Illumination Variation[J]. Journal of Electronics & Information Technology, 2019, 41(3): 632-639. doi: 10.11999/JEIT180442

光照变化下基于逆向稀疏表示的视觉跟踪方法

doi: 10.11999/JEIT180442
基金项目: 国家自然科学基金(61301258, 61271379),中国博士后科学基金(2016M590218)
详细信息
    作者简介:

    王洪雁:男,1979年生,副教授,博士,主要研究方向为MIMO雷达信号处理、毫米波通信、机器视觉

    邱贺磊:男,1991年生,硕士生,研究方向为图像处理、机器视觉

    郑佳:男,1990年生,硕士生,研究方向为机器视觉、无人机容错控制

    裴炳南:男,1956年生,教授,博士,博士生导师,主要研究方向为雷达信号处理、毫米波通信

    通讯作者:

    王洪雁 gglongs@163.com

  • 中图分类号: TP391

Visual Tracking Method Based on Reverse Sparse Representation under Illumination Variation

Funds: The National Natural Science Foundation of China (61301258, 61271379), China Postdoctoral Science Foundation (2016M590218)
  • 摘要:

    针对光照变化引起目标跟踪性能显著下降的问题,该文提出一种联合优化光照补偿和多任务逆向稀疏表示的视觉跟踪方法。首先基于模板与候选目标的平均亮度差异对模板实施光照补偿,并利用候选目标逆向稀疏表示光照补偿后的模板。而后将所得多个关于单模板的优化问题转化为一个关于多模板的多任务优化问题,并利用交替迭代方法求解此多任务优化问题以获得最优光照补偿系数矩阵以及稀疏编码矩阵。最后利用所得稀疏编码矩阵快速剔除无关候选目标,并采用局部结构化评估方法实现目标精确跟踪。仿真结果表明,与现有主流算法相比,剧烈光照变化情况下,所提方法可显著改善目标跟踪精度及稳健性。

  • 图  1  用于光照补偿的图像矢量化

    图  2  跟踪结果

    表  1  光照补偿与多任务逆向稀疏表示联合优化算法

     输入:${T}$, ${Y}$, $\beta $和$\tilde \lambda $
     (1) 基于式(8)设定稀疏编码矩阵${C}$的初始值;
     (2) 由式(12),式(2),式(4),式(6)获得${K}$;
     (3) 利用APG方法求解问题式(13)以求得${C}$;
     (4) 重复步骤(2),步骤(3),直至满足收敛条件。
     输出:${K}$和${C}$
    下载: 导出CSV

    表  2  视频序列及其主要挑战

    测试序列挑战因素
    Car4光照变化,尺度变化
    Singer1光照变化,尺度变化,遮挡等
    Trellis光照变化,背景杂波,尺度变化等
    Car1光照变化,运动模糊,尺度变化等
    下载: 导出CSV

    表  3  不同跟踪方法的平均中心位置误差和平均跟踪重叠率

    测试序列平均中心位置误差(像素)平均跟踪重叠率
    本文TLDStruckL1APGMTT本文TLDStruckL1APGMTT
    Car43.4712.848.6977.0022.340.840.630.490.250.45
    Singer12.887.9914.5153.3536.170.860.730.360.280.34
    Trellis6.8231.066.9262.2068.800.650.480.610.200.21
    Car11.1885.1551.7393.93101.810.830.260.110.170.15
    平均3.5924.2620.4671.6257.280.800.530.400.230.29
    下载: 导出CSV

    表  4  快速候选目标筛选方案对运行速度(FPS)的影响

    测试序列Car4Singer1TrellisCar1
    不采用筛选方案运行速度(FPS)4.14.63.15.5
    采用筛选方案运行速度(FPS)10.58.710.48.4
    下载: 导出CSV
  • FRADI H, LUVISON B, and PHAM Q C. Crowd behavior analysis using local mid-level visual descriptors[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2017, 27(3): 589–602. doi: 10.1109/TCSVT.2016.2615443
    YU Gang, LI Chao, and SHANG Zeyuan. Video monitoring method, video monitoring system and computer program product[P]. USA Patent, 9792505, 2017.
    UENG S K and CHEN Guanzhi. Vision based multi-user human computer interaction[J]. Multimedia Tools & Applications, 2016, 75(16): 10059–10076. doi: 10.1007/s11042-015-3061-z
    WU Yi, LIM J, and YANG Minghsuan. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    PAN Zheng, LIU Shuai, and FU Weina. A review of visual moving target tracking[J]. Multimedia Tools & Applications, 2017, 76(16): 16989–17018. doi: 10.1007/s11042-016-3647-0
    薛模根, 刘文琢, 袁广林, 等. 基于编码迁移的快速鲁棒视觉跟踪[J]. 电子与信息学报, 2017, 39(7): 1571–1577. doi: 10.11999/JEIT160966

    XUE Mogen, LIU Wenzhuo, YUAN Guanglin, et al. Fast robust visual tracking based on coding transfer[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1571–1577. doi: 10.11999/JEIT160966
    杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634–639. doi: 10.11999/JEIT160467

    YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics &Information Technology, 2017, 39(3): 634–639. doi: 10.11999/JEIT160467
    BAIG M Z and GOKHALE A V. Object tracking using mean shift algorithm with illumination invariance[C]. Fifth International Conference on Communication Systems and Network Technologies, Gwalior, India, 2015: 550–553.
    NAYAK A and CHAUDHURI S. Automatic illumination correction for scene enhancement and object tracking[J]. Image & Vision Computing, 2006, 24(9): 949–959. doi: 10.1016/j.imavis.2006.02.017
    SILVEIRA G and MALIS E. Real-time visual tracking under arbitrary illumination changes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–6.
    WANG Yuru, TANG Xianglong, CUI Qing, et al. Dynamic appearance model for particle filter based visual tracking[J]. Pattern Recognition, 2012, 45(12): 4510–4523. doi: 10.1016/j.patcog.2012.05.010
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1830–1837.
    MA Bo, SHEN Jianbing, LIU Yangbiao, et al. Visual tracking using strong classifier and structural local sparse descriptors[J]. IEEE Transactions on Multimedia, 2015, 17(10): 1818–1828. doi: 10.1109/TMM.2015.2463221
    ZHUANG Bohan, LU Huchuan, XIAO Ziyang, et al. Visual tracking via discriminative sparse similarity map[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1872–1881. doi: 10.1109/TIP.2014.2308414
    JIA Xu, LU Huchuan, and YANG Minghsuan. Visual tracking via coarse and fine structural local sparse appearance models[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4555–4564. doi: 10.1109/TIP.2016.2592701
    SUI Yao and ZHANG Li. Robust tracking via locally structured representation[J]. International Journal of Computer Vision, 2016, 119(2): 110–144. doi: 10.1007/s11263-016-0881-x
    ZHANG Tianzhu, GHANEM B, LIU Si, et al. Robust visual tracking via multi-task sparse learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2042–2049.
    MA Bo, HUANG Lianghua, SHEN Jianbing, et al. Visual tracking under motion blur[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5867–5876. doi: 10.1109/TIP.2016.2615812
    ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125–141. doi: 10.1007/s11263-007-0075-7
    POLSON N and SOKOLOV V. Bayesian particle tracking of traffic flows[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 345–356. doi: 10.1109/TITS.2017.2650947
    HE Zhenyu, YI Shuangyan, CHEUNG Y M, et al. Robust object tracking via key patch sparse representation[J]. IEEE Transactions on Cybernetics, 2017, 47(2): 354–364. doi: 10.1109/TCYB.2016.2514714
    ZHANG Kaihua, ZHANG Lei, and YANG Minghsuan. Real-time compressive tracking[C]. European Conference on Computer Vision, Florence, Italy, 2012: 864–877.
    KALAL Z, MATAS J, and MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 49–56.
    HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 38(10): 2096–2109. doi: 10.1109/TPAMI.2015.2509974
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  1817
  • HTML全文浏览量:  599
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-10
  • 修回日期:  2018-11-08
  • 网络出版日期:  2018-11-19
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回