高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯融合的时空流异常行为检测模型

陈莹 何丹丹

陈莹, 何丹丹. 基于贝叶斯融合的时空流异常行为检测模型[J]. 电子与信息学报, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429
引用本文: 陈莹, 何丹丹. 基于贝叶斯融合的时空流异常行为检测模型[J]. 电子与信息学报, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429
Ying CHEN, Dandan HE. Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429
Citation: Ying CHEN, Dandan HE. Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429

基于贝叶斯融合的时空流异常行为检测模型

doi: 10.11999/JEIT180429
基金项目: 国家自然科学基金(61573168)
详细信息
    作者简介:

    陈莹:女,1976年生,教授,博士生导师,主要研究方向为信息融合、模式识别等

    何丹丹:女,1993年生,硕士生,研究方向为异常行为检测

    通讯作者:

    陈莹 chenying@jiangnan.edu.cn

  • 中图分类号: TP391

Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion

Funds: The National Natural Science Foundation of China (61573168)
  • 摘要:

    针对直接利用卷积自编码网络未考虑视频时间信息的问题,该文提出基于贝叶斯融合的时空流异常行为检测模型。空间流模型采用卷积自编码网络对视频单帧进行重构,时间流模型采用卷积长短期记忆(LSTM)编码-解码网络对短期光流序列进行重构。接着,分别计算空间流模型和时间流模型下每帧的重构误差,设计自适应阈值对重构误差图进行二值化,并基于贝叶斯准则对空间流和时间流下的重构误差进行融合,得到融合重构误差图,并在此基础上进行异常行为判断。实验结果表明,该算法在UCSD和Avenue视频库上的检测效果优于现有异常检测算法。

  • 图  1  基于贝叶斯融合的时空流异常行为检测整体框架

    图  2  空间流卷积网络模型各层参数尺寸

    图  3  Conv-LSTM编码-解码过程

    图  4  基于贝叶斯的时空流融合图

    图  5  重构图显示

    图  6  可视化规则分数图

    图  7  UCSD Ped1和Ped2数据库基于规则分数的ROC曲线

    表  1  基于规则分数的帧级别下的EER和AUC比较(%)

    方法UCSD Ped1 UCSD Ped2
    EERAUCEERAUC
    MPPCA+SF[16]32.074.2 36.061.3
    HOFME[19]33.172.720.087.5
    Conv-AE[9]27.976.821.790.0
    ConvLSTM-AE[20]N/A75.5N/A88.1
    Unmasking[21]N/A68.4N/A82.2
    Stack RNN[22]N/AN/AN/A92.2
    BFSTS(间隔/连续采样)28/27.976.5/77.816.0/13.092.7/94.7
    下载: 导出CSV
  • LU Cewu, SHI Jianping, and JIA Jiaya. Abnormal event detection at 150 FPS in MATLAB[C]. Proceedings of 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2720–2727.
    WEN Hui, GE Shiming, CHEN Shuixian, et al. Abnormal event detection via adaptive cascade dictionary learning[C]. Proceedings of 2015 IEEE International Conference on Image Processing, Quebec, Canada, 2015: 847–851.
    GUO Huiwen, WU Xinyu, CAI Shibo, et al. Quaternion discrete cosine transformation signature analysis in crowd scenes for abnormal event detection[J]. Neurocomputing, 2016, 204: 106–115. doi: 10.1016/j.neucom.2015.07.153
    SABOKROU M, FATHY M, HOSEINI M, et al. Real-time anomaly detection and localization in crowded scenes[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 56–62.
    SABOKROU M, FAYYAZ M, FATHY M, et al. Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes[J]. Computer Vision and Image Understanding, 2018, 172: 88–97. doi: 10.1016/j.cviu.2018.02.006
    XU Dan, YAN Yan, RICCI E, et al. Detecting anomalous events in videos by learning deep representations of appearance and motion[J]. Computer Vision and Image Understanding, 2016, 156: 117–127. doi: 10.1016/j.cviu.2016.10.010
    DIMOKRANITOU A. Adversarial autoencoders for anomalous event detection in images[D]. [Ph.D. dissertation], Purdue University, 2017.
    袁静, 章毓晋. 融合梯度差信息的稀疏去噪自编码网络在异常行为检测中的应用[J]. 自动化学报, 2017, 43(4): 604–610. doi: 10.16383/j.aas.2017.c150667

    YUAN Jing and ZHANG Yujin. Application of sparse denoising auto encoder network with gradient difference information for abnormal action detection[J]. Acta Automatica Sinica, 2017, 43(4): 604–610. doi: 10.16383/j.aas.2017.c150667
    HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 733–742. doi: 10.1109/CVPR.2016.86.
    CHONG Y S and YONG H T. Abnormal event detection in videos using spatiotemporal autoencoder[C]. Proceedings of the 14th International Symposium on Neural Networks, Hokkaido, Japan, 2017: 189–196.
    FEICHTENHOFER C, PINZ A, and ZISSERMAN A. Convolutional two-stream network fusion for video action recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1933–1941. doi: 10.1109/CVPR.2016.213.
    SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
    LIU Ce, FREEMAN W T, ADELSON E H, et al. Human-assisted motion annotation[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    XIE Yulin, LU Huchuan, and YANG M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processin, 2013, 22(5): 1689–1698. doi: 10.1109/TIP.2012.2216276
    LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]. Proceedings of 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2976–2983.
    MAHADEVAN V, LI Weixin, BHALODIA V, et al. Anomaly detection in crowded scenes[C]. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1975–1981.
    DUCHI J, HAZAN E, and SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011, 12: 2121–2159.
    GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 2010: 249–256.
    WANG Tian and SNOUSSI H. Histograms of optical flow orientation for abnormal events detection[C]. Proceedings of 2013 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Clearwater, USA, 2013: 45–52.
    LUO Weixin, LIU Wen, and GAO Shenghua. Remembering history with convolutional LSTM for anomaly detection[C]. Proceedings of 2017 IEEE International Conference on Multimedia and Expo, Hong Kong, China, 2017: 439–444.
    IONESCU R T, SMEUREANU S, ALEXE B, et al. Unmasking the abnormal events in video[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2895–2903.
    LUO Weixin, LIU Wen, and GAO Shenghua. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 341–349.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3992
  • HTML全文浏览量:  910
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 修回日期:  2019-01-29
  • 网络出版日期:  2019-02-20
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回