高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时延优化的蜂窝D2D通信联合用户关联及内容部署算法

柴蓉 王令 陈明龙 陈前斌

柴蓉, 王令, 陈明龙, 陈前斌. 基于时延优化的蜂窝D2D通信联合用户关联及内容部署算法[J]. 电子与信息学报, 2019, 41(11): 2565-2570. doi: 10.11999/JEIT180408
引用本文: 柴蓉, 王令, 陈明龙, 陈前斌. 基于时延优化的蜂窝D2D通信联合用户关联及内容部署算法[J]. 电子与信息学报, 2019, 41(11): 2565-2570. doi: 10.11999/JEIT180408
Rong CHAI, Ling WANG, Minglong CHEN, Qianbin CHEN. Joint Clustering and Content Deployment Algorithm for Cellular D2D Communication Based on Delay Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2565-2570. doi: 10.11999/JEIT180408
Citation: Rong CHAI, Ling WANG, Minglong CHEN, Qianbin CHEN. Joint Clustering and Content Deployment Algorithm for Cellular D2D Communication Based on Delay Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2565-2570. doi: 10.11999/JEIT180408

基于时延优化的蜂窝D2D通信联合用户关联及内容部署算法

doi: 10.11999/JEIT180408
基金项目: 国家自然科学基金(61571073),国家科技重大专项(2016ZX03001010-004)
详细信息
    作者简介:

    柴蓉:女,1974年生,教授,研究方向为通信网络架构及关键技术、无线资源管理及移动性管理技术等

    王令:女,1993年生,硕士生,研究方向为无线通信、无线资源管理及网络虚拟化等

    陈明龙:男,1993年生,硕士生,研究方向为无线资源管理、网络虚拟化及内容缓存等

    陈前斌:男,1967年生,教授,研究方向为无线通信、通信网络理论、软件定义网络、多媒体技术等

    通讯作者:

    柴蓉 chairong@cqupt.edu.cn

  • 中图分类号: TN915

Joint Clustering and Content Deployment Algorithm for Cellular D2D Communication Based on Delay Optimization

Funds: The National Science Foundation of China (61571073), The National Science and Technology Specific Project of China (2016ZX03001010-004)
  • 摘要: 针对蜂窝网络传输性能及基站(BS)缓存能力受限,多用户内容请求难以满足用户服务质量(QoS)需求等问题,该文提出一种蜂窝终端直通(D2D)通信联合用户关联及内容部署算法。考虑到位于特定区域的多用户可能对于相同内容存在内容请求,该文引入成簇思想,提出一种成簇及内容部署机制,通过为各簇头推送热点内容,而簇成员基于D2D通信模式关联簇头获取所需内容,可实现高效内容获取。综合考虑成簇数量、用户关联簇头、簇头缓存容量及传输速率等限制条件,建立基于用户总业务时延最小化的联合成簇及内容部署优化模型。该优化问题是一个非凸的混合整数优化问题,该文运用拉格朗日部分松弛法,将原优化问题等价转换为3个凸优化的子问题,并基于迭代算法及Kuhn-Munkres算法联合求解各子问题,从而得到联合成簇及内容部署优化策略。最后通过MATLAB仿真验证所提算法的有效性。
  • 图  1  蜂窝D2D通信系统场景图

    图  2  基于用户成簇机制的蜂窝D2D系统场景图

    图  3  总业务时延与迭代次数关系图

    图  4  总业务时延与业务到达速率关系图(不同服务速率)

    图  5  总业务时延与业务到达速率关系图(不同最低传输速率)

    图  6  总业务时延与子信道带宽关系图(不同噪声功率谱密度)

    图  7  总业务时延与子信道带宽关系图(不同业务到达速率)

    表  1  联合用户关联及内容部署算法

     (1) 确定L种簇头组合策略;
     (2) for $l = 1$,针对第$l$种簇头组合策略;
     (3) 设置最大迭代次数${T^{\ \max }}$和最大容忍值$\varepsilon $;
     (4) 初始化拉格朗日因子${\eta _{i,j,k}},\;{\varphi _{i,j,k}},\;{\theta _{i,j,k}}$;
     (5) 重复主程序;
     (6) 求解用户关联子问题得到局部变量值${\delta _{i,j}}$;
      求解内容部署子问题得到局部变量值${\beta _{j,k}}$;
      求解联合优化子问题得到局部变量值${\alpha _{i,j,k}}$;
     (7) 更新拉格朗日因子;
      ${\eta _{i,j,k}}(t + 1) = {\left[ {{\eta _{i,j,k}}(t) - {\omega _1}\left( {{\alpha _{i,j,k}}(t) + 1 - {\delta _{i,j}}(t) - {\beta _{j,k}}(t)} \right)} \right]^ + },$
      ${\varphi _{i,j,k}}(t + 1) = {\left[ {{\varphi _{i,j,k}}(t) - {\omega _2}\left( {{\delta _{i,j}}(t) - {\alpha _{i,j,k}}(t)} \right)} \right]^ + },$
      ${\theta _{i,j,k}}(t + 1) = {\left[ {{\theta _{i,j,k}}(t) - {\omega _3}\left( {{\beta _{j,k}}(t) - {\alpha _{i,j,k}}(t)} \right)} \right]^{\rm{ + }}};$
     (8) 若$ \sum\nolimits_{i = 1}^M \sum\nolimits_{j = 1}^M \sum\nolimits_{k = 1}^K \left[ \left| {{\eta _{i,j,k}}(t + 1) - {\eta _{i,j,k}}(t)} \right| \right. $     $\left.+ \left| {{\varphi _{i,j,k}}(t + 1) - {\varphi _{i,j,k}}(t)} \right| + \left| {{\theta _{i,j,k}}(t + 1) - {\theta _{i,j,k}}(t)} \right| \right] \le \varepsilon $ ;
     (9) 算法收敛;
      返回 $\delta _{i,j}^{\left( l \right) * }{\rm{ = }}{\delta _{i,j}},\beta _{j,k}^{\left( l \right) * }{\rm{ = }}{\beta _{j,k}},\alpha _{i,j,k}^{\left( l \right) * }{\rm{ = }}{\alpha _{i,j,k}};$
     (10) 否则 $t = t + 1$;
     (11) 重复步骤(6)—步骤(10),直到算法收敛或$t = {T^{\ \max }}$;
     (12) $l = l + 1$,重复步骤(5)—步骤(11),得到$\delta _{i,j}^{\left( l \right)*},\;\beta _{j,k}^{\left( l \right) * },\;\alpha _{i,j,k}^{\left( l \right) * }$及${D^{\left( l \right) * }}$,直至$l = L$;
     (13) 比较$L$种簇头组合下的最优业务时延,选择最优用户关联及内容部署优化策略,即$\left\{ {\delta _{i,j}^{\left( l \right) * },\beta _{j,k}^{\left( l \right) * },\alpha _{i,j,k}^{\left( l \right) * }} \right\} = \arg \min {D^{\left( l \right) * }}。$
    下载: 导出CSV
  • TEHRANI M N, UYSAL M, and YANIKOMEROGLU H. Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions[J]. IEEE Communications Magazine, 2014, 52(5): 86–92. doi: 10.1109/MCOM.2014.6815897
    ASADI A, WANG Qing, and MANCUSO V. A survey on device-to-device communication in cellular networks[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 1801–1819. doi: 10.1109/COMST.2014.2319555
    FODOR G, DAHLMAN E, MILDH G, et al. Design aspects of network assisted device-to-device communications[J]. IEEE Communications Magazine, 2012, 50(3): 170–177. doi: 10.1109/MCOM.2012.6163598
    ZHU Huiling. Radio resource allocation for OFDMA systems in high speed environments[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4): 748–759. doi: 10.1109/JSAC.2012.120509
    MA Ruofei, XIA Nian, CHEN H H, et al. Mode selection, radio resource allocation, and power coordination in D2D communications[J]. IEEE Wireless Communications, 2017, 24(3): 112–121. doi: 10.1109/MWC.2017.1500385WC
    WEN Dingzhu, YU Guanding, and XU Lukai. Energy-efficient mode selection and power control for device-to-device communications[C]. Proceedings of 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–7. doi: 10.1109/WCNC.2016.7565099.
    PENDA D D, FU Liqun, and JOHANSSON M. Mode selection for energy efficient D2D communications in dynamic TDD systems[C]. Proceedings of 2015 IEEE International Conference on Communications, London, UK, 2015: 5404–5409. doi: 10.1109/ICC.2015.7249183.
    KLUGEL M and KELLERER W. Leveraging the D2D-gain: Resource efficiency based mode selection for device-to-device communication[C]. Proceedings of 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–7. doi: 10.1109/GLOCOM.2016.7841953.
    WANG Kan, YU F R, and LI Hongyan. Information-centric virtualized cellular networks with device-to-device communications[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9319–9329. doi: 10.1109/TVT.2016.2518658
    PAN Yijin, PAN Cunhua, ZHU Huiling, et al. On consideration of content preference and sharing willingness in D2D assisted offloading[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(4): 978–993. doi: 10.1109/JSAC.2017.2680938
    LI Xiaoshuai, MA Lin, SHANKARAN R, et al. Joint mode selection and proportional fair scheduling for D2D communication[C]. Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1–6. doi: 10.1109/PIMRC.2017.8292254.
    LIBERTI L and PANTELIDES C C. An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms[J]. Journal of Global Optimization, 2006, 36(2): 161–189. doi: 10.1007/s10898-006-9005-4
    LEMARÉCHAL C. S. Boyd, VANDENBERGHE L. Convex optimization[J]. European Journal of Operational Research, 2006, 170(1): 326–327. doi: 10.1016/j.ejor.2005.02.002.
    HUANG Yifei, NASIR A A, DURRANI S, et al. Mode selection, resource allocation, and power control for D2D-enabled two-tier cellular network[J]. IEEE Transactions on Communications, 2016, 64(8): 3534–3547. doi: 10.1109/TCOMM.2016.2580153
    JIANG Wei, FENG Gang, and QIN Shuang. Optimal cooperative content caching and delivery policy for heterogeneous cellular networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(5): 1382–1393. doi: 10.1109/TMC.2016.2597851
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2780
  • HTML全文浏览量:  1129
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-02
  • 修回日期:  2019-05-21
  • 网络出版日期:  2019-07-19
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回