高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于灰度变换与两尺度分解的夜视图像融合

朱浩然 刘云清 张文颖

朱浩然, 刘云清, 张文颖. 基于灰度变换与两尺度分解的夜视图像融合[J]. 电子与信息学报, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407
引用本文: 朱浩然, 刘云清, 张文颖. 基于灰度变换与两尺度分解的夜视图像融合[J]. 电子与信息学报, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407
Haoran ZHU, Yunqing LIU, Wenying ZHANG. Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition[J]. Journal of Electronics & Information Technology, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407
Citation: Haoran ZHU, Yunqing LIU, Wenying ZHANG. Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition[J]. Journal of Electronics & Information Technology, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407

基于灰度变换与两尺度分解的夜视图像融合

doi: 10.11999/JEIT180407
详细信息
    作者简介:

    朱浩然:男,1987年生,博士生,研究方向为图像融合、图像增强等

    刘云清:男,1970年生,教授,博士生导师,主要研究方向为自动控制与测试技术等

    张文颖:女,1988年生,博士生,研究方向为光电测量与精密仪器等

    通讯作者:

    刘云清 mzliuyunqing@163.com

  • 中图分类号: TP391

Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition

  • 摘要:

    为了获得更适合人感知的夜视融合图像,该文提出一种基于灰度变换与两尺度分解的夜视图像融合算法。首先,利用红外像素值作为指数因子对可见光图像进行灰度转换,在达到可见光图像增强的同时还使可见光与红外图像融合任务转换为同类图像融合。其次,通过均值滤波对增强结果与原始可见光图像进行两尺度分解。再次,运用基于视觉权重图的方法融合细节层。最后,综合这些结果重构出融合图像。由于该文方法在可见光波段显示结果,因此融合图像更适合视觉感知。实验结果表明,所提方法在视觉质量和客观评价方面优于其它5种对比方法,融合时间小于0.2 s,满足实时性要求。融合后图像背景细节信息清晰,热目标突出,同时降低处理时间。

  • 图  1  HE与本文方法结果比较

    图  2  提出的图像融合方法的框架

    图  3  视觉显著性检测的原理图

    图  4  权重图

    图  5  不同方法对源图像“Quad”的融合结果比较

    图  6  不同方法对源图像“UNcamp”的融合结果比较

    图  7  不同方法对源图像“Kaptein”的融合结果比较

    图  8  不同方法对源图像“Steamboat”的融合结果比较

    图  9  不同方法的客观性能指标平均值比较

    表  1  不同融合方法的客观性能指标

    图像评价指标LAPROLPCVTDTCWTADF本文方法
    $\mathop \mu \limits^ \wedge $52.506755.502551.900551.898351.775670.1690
    Quad$\sigma $31.561628.262425.180425.268221.989434.3756
    ${E_f}$6.47296.10936.16926.15866.03986.7689
    $\mathop \mu \limits^ \wedge $90.814996.305291.086891.078891.1387124.2739
    UNcamp$\sigma $29.129227.730126.939126.276023.226538.3262
    ${E_f}$6.65506.55086.53106.48476.28657.2638
    $\mathop \mu \limits^ \wedge $82.178886.197982.101082.076682.0353122.6444
    Kaptein$\sigma $36.264935.791834.158233.615231.690251.6181
    ${E_f}$6.77636.79116.77796.70546.60477.4176
    $\mathop \mu \limits^ \wedge $110.9204113.3709110.9161110.9148110.9183163.6281
    Steamboat$\sigma $14.074313.831912.470012.316011.078626.4028
    ${E_f}$5.30715.35955.20875.13775.00495.9645
    下载: 导出CSV

    表  2  处理时间对比(s)

    图像大小LAPROLPCVTDTCWTADF本文方法
    Quad496×6320.01930.19311.99940.52880.92670.1681
    UNcamp270×3600.00940.10761.22810.24800.32250.1021
    Kaptein450×6200.02030.19191.83080.48910.85700.1341
    Steamboat510×5050.01270.17711.70490.44340.84720.1192
    平均0.02470.16741.69080.42730.73840.1309
    下载: 导出CSV
  • 冯鑫, 张建华, 胡开群, 等. 基于变分多尺度的红外与可见光图像融合[J]. 电子学报, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025

    FENG Xin, ZHANG Jianhua, HU Kaiqun, et al. The infrared and visible image fusion method based on variational multiscale[J]. Acta Electronica Sinica, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025
    江泽涛, 吴辉, 周哓玲. 基于改进引导滤波和双通道脉冲发放皮层模型的红外与可见光图像融合算法[J]. 光学学报, 2018, 38(2): 112–120. doi: 10.3788/aos201838.0210002

    JIANG Zetao, WU Hui, and ZHOU Xiaoling. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J]. Acta Optica Sinica, 2018, 38(2): 112–120. doi: 10.3788/aos201838.0210002
    LI Jinxi, ZHOU Dingfu, YUAN Sheng, et al. Modified image fusion technique to remove defocus noise in optical scanning holography[J]. Optics Communications, 2018, 407(15): 234–238. doi: 10.1016/j.optcom.2017.08.057
    YIN Xiang and MA Jun. Image fusion method based on entropy rate segmentation and multi-scale decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 1–8. doi: 10.3788/LOP55.011011
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222
    LEWIS J J, O'CALLAGHAN R J, NIKOLOV S G, et al. Pixel- and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119–130. doi: 10.1016/j.inffus.2005.09.006
    KUMAR B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193–1204. doi: 10.1007/s11760-013-0556-9
    谢伟, 周玉钦, 游敏. 融合梯度信息的改进引导滤波[J]. 中国图象图形学报, 2016, 21(9): 1119–1126. doi: 10.11834/jig.20160901

    XIE Wei, ZHOU Yuqin, and YOU Min. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics, 2016, 21(9): 1119–1126. doi: 10.11834/jig.20160901
    ZUO Yujia, LIU Jinghong, BAI Guanbing, et al. Airborne infrared and visible image fusion combined with region segmentation[J]. Sensors, 2017, 17(5): 1–15. doi: 10.3390/s17051127
    TAO Li, NGO Hau, ZHANG Ming, et al. A multisensory image fusion and enhancement system for assisting drivers in poor lighting conditions[C]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, Washington, USA, 2005: 106–113.
    CHANDRASHEKAR L and SREEDEVI A. Advances in biomedical imaging and image fusion[J]. International Journal of Computer Applications, 2018, 179(24): 1–9. doi: 10.5120/ijca2018912307
    LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36(7): 191–207. doi: 10.1016/j.inffus.2016.12.001
    刘峰, 沈同圣, 马新星. 交叉双边滤波和视觉权重信息的图像融合[J]. 仪器仪表学报, 2017, 38(4): 1005–1013. doi: 10.3969/j.issn.0254-3087.2017.04.027

    LIU Feng, SHEN Tongsheng, and MA Xinxing. Image fusion via cross bilateral filter and visual weight information[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1005–1013. doi: 10.3969/j.issn.0254-3087.2017.04.027
    ZHAO Jufeng, FENG Huajun, XU Zhihai, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287(2): 45–52. doi: 10.1016/j.optcom.2012.08.070
    LIU Zhaodong, CHAI Yi, YIN Hongpeng, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35(5): 102–116. doi: 10.1016/j.inffus.2016.09.007
    孙彦景, 杨玉芬, 刘东林, 等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报, 2016, 38(1): 127–134. doi: 10.11999/JEIT150616

    SUN Yanjing, YANG Yufen, LIU Donglin, et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics &Information Technology, 2016, 38(1): 127–134. doi: 10.11999/JEIT150616
    LI Jun, SONG Minghui, and PENG Yuanxi. Infrared and visible image fusion based on robust principal component analysis and compressed sensing[J]. Infrared Physics & Technology, 2018, 89(3): 129–139. doi: 10.1016/j.infrared.2018.01.003
    刘国军, 高丽霞, 陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学精密工程, 2017, 25(3): 742–748. doi: 10.3788/OPE.20172503.0742

    LIU Guojun, GAO Lixia, and CHEN Liqi. Pool strategy for full-reference IQA via general means[J]. Optics and Precision Engineering, 2017, 25(3): 742–748. doi: 10.3788/OPE.20172503.0742
    曲怀敬, 李健. 基于混合统计建模的图像融合[J]. 计算机辅助设计与图形学学报, 2017, 29(5): 838–845. doi: 10.3969/j.issn.1003-9775.2017.05.007

    QU Huaijing and LI Jian. Image fusion based on statistical mixture modeling[J]. Journal of Computer-Aided Design &Computer Graphics, 2017, 29(5): 838–845. doi: 10.3969/j.issn.1003-9775.2017.05.007
    朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 213–221. doi: 10.3788/gzxb20174612.1210002

    ZHU Pan, LIU Zeyang, and HUANG Zhanhua. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2017, 46(12): 213–221. doi: 10.3788/gzxb20174612.1210002
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2383
  • HTML全文浏览量:  976
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2018-10-18
  • 网络出版日期:  2018-10-31
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回