高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自相关-倒谱联合分析的无人机旋翼转动频率估计方法

宋晨 周良将 吴一戎 丁赤飚

宋晨, 周良将, 吴一戎, 丁赤飚. 基于自相关-倒谱联合分析的无人机旋翼转动频率估计方法[J]. 电子与信息学报, 2019, 41(2): 255-261. doi: 10.11999/JEIT180399
引用本文: 宋晨, 周良将, 吴一戎, 丁赤飚. 基于自相关-倒谱联合分析的无人机旋翼转动频率估计方法[J]. 电子与信息学报, 2019, 41(2): 255-261. doi: 10.11999/JEIT180399
Chen SONG, Liangjiang ZHOU, Yirong WU, Chibiao DING. An Estimation Method of Rotation Frequency of Unmanned Aerial Vehicle Based on Auto-correlation and Cepstrum[J]. Journal of Electronics & Information Technology, 2019, 41(2): 255-261. doi: 10.11999/JEIT180399
Citation: Chen SONG, Liangjiang ZHOU, Yirong WU, Chibiao DING. An Estimation Method of Rotation Frequency of Unmanned Aerial Vehicle Based on Auto-correlation and Cepstrum[J]. Journal of Electronics & Information Technology, 2019, 41(2): 255-261. doi: 10.11999/JEIT180399

基于自相关-倒谱联合分析的无人机旋翼转动频率估计方法

doi: 10.11999/JEIT180399
详细信息
    作者简介:

    宋晨:男,1992年生,博士生,研究方向为雷达信号处理、目标检测与识别等

    周良将:男,1981年生,副研究员,研究方向为合成孔径雷达系统设计、系统误差补偿及其相关信号处理技术

    吴一戎:男,1963年生,研究员,中国科学院院士,研究方向为高分辨机载合成孔径雷达及运动补偿技术、SAR信号处理算法、遥感卫星地面处理与应用系统的体系结构、数据处理算法等

    丁赤飚:男,1969年生,研究员,研究方向为先进合成孔径雷达系统和信号处理技术、数字信号处理、信息系统技术等

    通讯作者:

    周良将 ljzhou@mail.ie.ac.cn

  • 中图分类号: TN957.51

An Estimation Method of Rotation Frequency of Unmanned Aerial Vehicle Based on Auto-correlation and Cepstrum

  • 摘要:

    准确估计无人机旋翼转动频率对于无人机的检测与识别具有重要意义。该文针对调频连续波雷达的无人机目标回波模型,提出一种自相关-倒谱联合分析的无人机旋翼转动频率估计方法,推导了无人机旋翼转动频率与雷达回波倒谱输出中周期性时延的映射关系,通过加权均衡能够更有效地估计多旋翼无人机旋翼转动频率,弥补了传统方法的不足。通过仿真和实际场景实验验证了方法的有效性。

  • 图  1  雷达观测多旋翼无人机几何模型

    图  2  自相关-倒谱联合估计方法流程图

    图  3  传统方法仿真结果对比

    图  4  仿真结果对比

    图  5  不同方法旋翼转动频率估计误差对比

    图  6  不同旋翼转动频率估计方法处理结果对比

    图  7  旋翼变速转动处理结果

    表  1  雷达系统参数

    参数数值
    中心频率f034.6 GHz
    带宽1.2 GHz
    PRF31.25 kHz
    无人机与雷达距离200 m
    原始回波SNR0 dB
    观测时间1 s
    下载: 导出CSV
  • HOFFMANN F, RITCHIE M, FIORANELLI, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]. Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485236.
    CHEN Xinlin, XIAO Guangzong, XIONG Wei, et al. Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect[J]. Optical Engineering, 2018, 57(3): 036103. doi: 10.1117/1.OE.57.3.036103
    ZHANG Wenyu and LI Gang. Detection of multiple micro-drones via cadence velocity diagram analysis[J]. Electronics Letters, 2018, 54(7): 441–443. doi: 10.1049/el.2017.4317
    黄小红, 贺夏, 辛玉林, 等. 基于时频特征的低分辨雷达微动多目标分辨方法[J]. 电子与信息学报, 2010, 32(10): 2342–2347. doi: 10.3724/SP.J.1146.2009.0314

    HUANG Xiaohong, HE Xia, XIN Yulin, et al. Resolving multiple targets with micro-motions based on time-frequency feature with low-resolution radar[J]. Jounal of Electronics &Information Technology, 2010, 32(10): 2342–2347. doi: 10.3724/SP.J.1146.2009.0314
    CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    ANDERSON M G and ROGERS R L. Micro-Doppler analysis of multiple frequency continuous wave radar signatures[C]. Defense and Security Symposium, Orlando, USA, 2007. 6547: 65470A-65470A-10. doi: 10.1117/12.719800.
    王璐, 刘宏伟. 基于时频图的微动目标运动参数提取和特征识别的方法[J]. 电子与信息学报, 2010, 32(8): 1812–1817. doi: 10.3724/SP.J.1146.2009.01127

    WANG Lu and LIU Hongwei. Method for micro-motion target recognition and motion parameter extraction based on time-frequency analysis[J]. Jounal of Electronics &Information Technology, 2010, 32(8): 1812–1817. doi: 10.3724/SP.J.1146.2009.01127
    SPARR T and KRANE B. Micro-Doppler analysis of vibrating targets in SAR[J]. IEE Proceedings: Radar, Sonar and Navigation, 2003, 150(4): 277–283. doi: 10.1049/ip-rsn:20030697
    SETLUR P, AMIN M, and THAYAPARAN T. Micro-doppler signal estimation for vibrating and rotating targets[C]. IEEE Eighth International Symposium on Signal Processing and ITS Applications, Sydney, Australia, 2005: 639–642. doi: 10.1109/ISSPA.2005.1581019.
    YANG Yang, PENG Zhike, DONG Xiaojin, et al. General parameterized time-frequency transform[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2751–2764. doi: 10.1109/TSP.2014.2314061
    ANGRISANI L, D'ARCO M, MORIELLO R S L, et al. Warblet transform based method for instantaneous frequency measurement on multicomponent signals[C]. Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition. Montreal, Canada. 2004: 500–508. doi: 10.1109/FREQ.2004.1418509.
    VISHWAKARMA S and RAM S S. Detection of multiple movers based on single channel source separation of their micro-Dopplers[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(1): 159–169. doi: 10.1109/TAES.2017.2739958
    KANG Wenwu, ZHANG Yunhua, and DONG Xiao. Micro-Doppler effect removal for ISAR imaging based on bivariate variational mode decomposition[J]. IET Radar Sonar & Navigation, 2018, 12(1): 74–81. doi: 10.1049/iet-rsn.2017.0104
    LIU Yixing, LI Xiang, and ZHUANG Zuwen. Estimation of micro-motion parameters based on micro-Doppler[J]. IET Signal Processing, 2010, 4(3): 213–217. doi: 10.1049/iet-spr.2009.0042
    STANKOVIC L, DJUROVIC I, and THAYAPARAN T. Separation of target rigid body and micro-Doppler effects in ISAR imaging[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(4): 1496–1506. doi: 10.1109/TAES.2006.314590
    THAYAPARAN T, STANKOVIĆ L, and DJUROVIĆ I. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institute, 2008, 345(6): 700–722. doi: 10.1016/j.jfranklin.2008.01.003
    CAI Chengjie, LIU Weixian, FU Junshan, et al. Empirical mode decomposition of micro-Doppler signature[C]. IEEE International Radar Conference, Arlington, Virginia, USA, 2005: 895–899. doi: 10.1109/RADAR.2005.1435954.
    LAI Caiping, RUAN Quan, and NARAYANAN R M. Hilbert-Huang Transform (HHT) processing of through-wall noise radar data for human activity characterization[C]. IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA, 2007: 1–6.
    THAYAPARAN T, ABROL S, and QIAN S. Micro-Doppler analysis of rotating target in SAR[R]. Defence Research and Development Canada Ottawa (ONTARIO), 2005.
    WALTER M, SHUTIN D, and DAMMANN A. Time-variant Doppler PDFs and characteristic functions for the vehicle-to-vehicle channel[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10748–10763. doi: 10.1109/TVT.2017.2722229
    FUHRMANN L, BIALLAWONS O, KLARE J, et al. Micro-Doppler analysis and classification of UAVs at Ka band[C]. 2017 18th IEEE International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008142.
    LUCA P, PAOLO C, and FABRIZIO B. Radar micro-Doppler mini-UAV classification using spectrograms and cepstrograms[J]. International Journal of Microwave & Wireless Technologies, 2015, 7(3/4): 469–477. doi: 10.1017/S1759078715001002
    芦俊, 张颜岭, 张凤园. 一种被动声呐线谱背景均衡算法[J]. 声学与电子工程, 2016(3): 20–22.

    LU Jun, ZHANG Yanling, and Zhang Fengyuan. A passive sonar line spectrum background equalization algorithm[J]. Acoustics and Electronic Engineering, 2016(3): 20–22.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2366
  • HTML全文浏览量:  813
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 修回日期:  2018-11-02
  • 网络出版日期:  2018-11-12
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回