Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform
-
摘要:
针对Keystone变换在宽带阵列预处理方面的优势和常规Keystone变换存在的阵元数据缺失问题,该文将自回归模型与常规Keystone变换相结合,提出一种基于提升Keystone变换的声呐宽带自适应波束形成算法。该算法首先将常规Keystone变换应用于宽带阵列信号的相位对齐,接着采用自回归模型对变换后各频段缺失的阵元数据进行预测补偿,最后通过稳健自适应波束形成处理获得目标方位输出结果。仿真实验结果表明,基于提升Keystone变换的宽带自适应波束形成算法性能优于常规Keystone自适应算法、指向最小方差自适应算法和聚焦自适应算法。
-
关键词:
- 宽带自适应波束形成 /
- Keystone变换 /
- 自回归模型
Abstract:Keystone transform is an effective broadband array signal pre-processing method, but it has a main problem of array data missing. In order to solve this problem, an enhanced Keystone transform algorithm, which combines the autoregression model with traditional Keystone transform, is proposed in this paper for sonar broadband adaptive beamforming. After phase alignment of broadband array signal using traditional Keystone transform, autoregression models for each frequency are constructed to compensate the missing array data. Then, a robust adaptive beamforming approach is utilized to obtain the target bearing results. The results of simulation studies indicate that the proposed broadband adaptive beamforming algorithm based on enhanced Keystone transform outperforms the beamforming algorithms based on traditional Keystone transform, steered minimum variance and frequency focusing.
-
Key words:
- Broadband adaptive beamforming /
- Keystone transform /
- Autoregression model
-
表 1 计算时间比较(s)
提升KS-RCB STMV-RCB 聚焦-RCB 64元,500 Hz带宽 1.89 6.69 1.53 64元,750 Hz带宽 2.27 8.86 1.93 128元,500 Hz带宽 4.60 15.73 4.82 256元,500 Hz带宽 15.39 61.41 22.17 -
王永良,丁前军,李荣锋. 自适应阵列处理[M]. 北京: 清华大学出版社, 2015: 1–8.WANG Yongliang, DING Qianjun, and LI Rongfeng. Adaptive Array Processing[M]. Beijing: Tsinghua University Press, 2015: 1–8. 钱宇宁, 曹欣荣, 陈亚伟, 等. 被动声呐盲分离自适应-自适应波束形成算法研究[J]. 电子与信息学报, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099QIAN Yuning, CAO Xinrong, CHEN Yawei, et al. Research on adaptive-adaptive beamforming algorithm based on blind separation for passive sonar[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099 YAN Chao, ZHANG Weiyu, XU Peng, et al. An improved robust adaptive beamforming based on worst-case performance optimization[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2729–2731. doi: 10.1121/1.5014963 LIU Wei and LANGLEY R J. An adaptive wideband beamforming structure with combined subband decomposition[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 2204–2207. doi: 10.1109/TAP.2009.2021978 BUCRIS Y, COHEN I, and DORON M A. Bayesian focusing for coherent wideband beamforming[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(4): 1282–1296. doi: 10.1109/TASL.2011.2175384 SOMASUNDARAM S D. Wideband robust capon beamforming for passive sonar[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 308–322. doi: 10.1109/JOE.2012.2223560 LI Dong, ZHAN Muyang, LIU Hongqing, et al. A robust translational motion compensation method for ISAR imaging based on keystone transform and fractional fourier transform under low SNR environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2140–2156. doi: 10.1109/TAES.2017.2683599 HUANG Penghui, XIA Xianggen, LIAO Guisheng, et al. Ground moving target imaging based on Keystone transform and coherently integrated CPF with a single-channel SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, 10(12): 5686–5694. doi: 10.1109/JSTARS.2017.2742580 章建成, 苏涛, 吕倩. 基于运动参数非搜索高速机动目标检测[J]. 电子与信息学报, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042ZHANG Jiancheng, SU Tao, and LÜ Qian. High-speed maneuvering target detection based on non-searching estimation of motion parameters[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042 SUN Zhi, LI Xiaolong, YI Wei, et al. Detection of weak maneuvering target based on Keystone transform and matched filtering process[J]. Signal Processing, 2017, 140: 127–138. doi: 10.1016/j.sigpro.2017.05.013 张宁, 汤小为, 汤俊. 基于Keystone 变换预处理的宽带波束形成方法[J]. 清华大学学报(自然科学版), 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017ZHANG Ning, TANG Xiaowei, and TANG Jun. Broadband beamforming method based on Keystone transform pre-processing[J]. Journal of Tsinghua University(Science and Technology) , 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017 ZHAO Yongbo, WANG Juan, HUANG Lei, et al. Low complexity Keystone transform without interpolation for dim moving target detection[C]. Proceedings of IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1745–1748. MARANDA B. Efficient digital beamforming in the frequency domain[J]. Journal of the Acoustical Society of America, 1989, 86(5): 1813–1819. doi: 10.1121/1.398614 QIAN Yuning, YAN Ruqiang, and HU Shijie. Bearing degradation evaluation using recurrence quantification analysis and Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2599–2610. doi: 10.1109/TIM.2014.2313034 张玲华, 郑宝玉. 随机信号处理[M]. 北京: 清华大学出版社, 2008: 97–101.ZHANG Linghua and ZHENG Baoyu. Stochastic Signal Processing[M]. Beijing: Tsinghua University Press, 2008: 97–101. GOTO S, NAKAMURA M, and UOSAKI K. Online spectral estimation of nonstationary time-series based on AR model parameter-estimation and order selection with a forgetting factor[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1519–1522. doi: 10.1109/78.388868