高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于提升Keystone变换的声呐宽带自适应波束形成方法

钱宇宁 陈亚伟 孙俊

钱宇宁, 陈亚伟, 孙俊. 基于提升Keystone变换的声呐宽带自适应波束形成方法[J]. 电子与信息学报, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394
引用本文: 钱宇宁, 陈亚伟, 孙俊. 基于提升Keystone变换的声呐宽带自适应波束形成方法[J]. 电子与信息学报, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394
Yuning QIAN, Yawei CHEN, Jun SUN. Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform[J]. Journal of Electronics & Information Technology, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394
Citation: Yuning QIAN, Yawei CHEN, Jun SUN. Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform[J]. Journal of Electronics & Information Technology, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394

基于提升Keystone变换的声呐宽带自适应波束形成方法

doi: 10.11999/JEIT180394
详细信息
    作者简介:

    钱宇宁:男,1988年生,工程师,研究方向为水声信号处理

    陈亚伟:男,1985年生,高级工程师,研究方向为水声信号处理

    孙俊:男,1975年生,高级工程师,研究方向为信号与信息处理

    通讯作者:

    钱宇宁 inter101010@sina.com

  • 中图分类号: TB566

Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform

  • 摘要:

    针对Keystone变换在宽带阵列预处理方面的优势和常规Keystone变换存在的阵元数据缺失问题,该文将自回归模型与常规Keystone变换相结合,提出一种基于提升Keystone变换的声呐宽带自适应波束形成算法。该算法首先将常规Keystone变换应用于宽带阵列信号的相位对齐,接着采用自回归模型对变换后各频段缺失的阵元数据进行预测补偿,最后通过稳健自适应波束形成处理获得目标方位输出结果。仿真实验结果表明,基于提升Keystone变换的宽带自适应波束形成算法性能优于常规Keystone自适应算法、指向最小方差自适应算法和聚焦自适应算法。

  • 图  1  Keystone变换过程示意图

    图  2  Keystone变换前后阵列数据比较

    图  3  提升Keystone变换宽带自适应波束形成算法框架

    图  4  4种算法波束形成结果(500 Hz带宽)

    图  5  4种算法波束形成结果(750 Hz带宽)

    图  6  4种算法波束形成结果(阵元数160)

    图  7  4种算法波束形成结果(阵元数256)

    表  1  计算时间比较(s)

    提升KS-RCBSTMV-RCB聚焦-RCB
    64元,500 Hz带宽1.896.691.53
    64元,750 Hz带宽2.278.861.93
    128元,500 Hz带宽4.6015.734.82
    256元,500 Hz带宽15.3961.4122.17
    下载: 导出CSV
  • 王永良,丁前军,李荣锋. 自适应阵列处理[M]. 北京: 清华大学出版社, 2015: 1–8.

    WANG Yongliang, DING Qianjun, and LI Rongfeng. Adaptive Array Processing[M]. Beijing: Tsinghua University Press, 2015: 1–8.
    钱宇宁, 曹欣荣, 陈亚伟, 等. 被动声呐盲分离自适应-自适应波束形成算法研究[J]. 电子与信息学报, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099

    QIAN Yuning, CAO Xinrong, CHEN Yawei, et al. Research on adaptive-adaptive beamforming algorithm based on blind separation for passive sonar[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099
    YAN Chao, ZHANG Weiyu, XU Peng, et al. An improved robust adaptive beamforming based on worst-case performance optimization[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2729–2731. doi: 10.1121/1.5014963
    LIU Wei and LANGLEY R J. An adaptive wideband beamforming structure with combined subband decomposition[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 2204–2207. doi: 10.1109/TAP.2009.2021978
    BUCRIS Y, COHEN I, and DORON M A. Bayesian focusing for coherent wideband beamforming[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(4): 1282–1296. doi: 10.1109/TASL.2011.2175384
    SOMASUNDARAM S D. Wideband robust capon beamforming for passive sonar[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 308–322. doi: 10.1109/JOE.2012.2223560
    LI Dong, ZHAN Muyang, LIU Hongqing, et al. A robust translational motion compensation method for ISAR imaging based on keystone transform and fractional fourier transform under low SNR environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2140–2156. doi: 10.1109/TAES.2017.2683599
    HUANG Penghui, XIA Xianggen, LIAO Guisheng, et al. Ground moving target imaging based on Keystone transform and coherently integrated CPF with a single-channel SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, 10(12): 5686–5694. doi: 10.1109/JSTARS.2017.2742580
    章建成, 苏涛, 吕倩. 基于运动参数非搜索高速机动目标检测[J]. 电子与信息学报, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042

    ZHANG Jiancheng, SU Tao, and LÜ Qian. High-speed maneuvering target detection based on non-searching estimation of motion parameters[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042
    SUN Zhi, LI Xiaolong, YI Wei, et al. Detection of weak maneuvering target based on Keystone transform and matched filtering process[J]. Signal Processing, 2017, 140: 127–138. doi: 10.1016/j.sigpro.2017.05.013
    张宁, 汤小为, 汤俊. 基于Keystone 变换预处理的宽带波束形成方法[J]. 清华大学学报(自然科学版), 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017

    ZHANG Ning, TANG Xiaowei, and TANG Jun. Broadband beamforming method based on Keystone transform pre-processing[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017
    ZHAO Yongbo, WANG Juan, HUANG Lei, et al. Low complexity Keystone transform without interpolation for dim moving target detection[C]. Proceedings of IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1745–1748.
    MARANDA B. Efficient digital beamforming in the frequency domain[J]. Journal of the Acoustical Society of America, 1989, 86(5): 1813–1819. doi: 10.1121/1.398614
    QIAN Yuning, YAN Ruqiang, and HU Shijie. Bearing degradation evaluation using recurrence quantification analysis and Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2599–2610. doi: 10.1109/TIM.2014.2313034
    张玲华, 郑宝玉. 随机信号处理[M]. 北京: 清华大学出版社, 2008: 97–101.

    ZHANG Linghua and ZHENG Baoyu. Stochastic Signal Processing[M]. Beijing: Tsinghua University Press, 2008: 97–101.
    GOTO S, NAKAMURA M, and UOSAKI K. Online spectral estimation of nonstationary time-series based on AR model parameter-estimation and order selection with a forgetting factor[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1519–1522. doi: 10.1109/78.388868
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1708
  • HTML全文浏览量:  1026
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-09-07
  • 网络出版日期:  2018-09-21
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回