高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非完备空际间叠干扰下星基导航信号捕获性能分析

张海川 曾芳玲

张海川, 曾芳玲. 非完备空际间叠干扰下星基导航信号捕获性能分析[J]. 电子与信息学报, 2019, 41(3): 594-601. doi: 10.11999/JEIT180355
引用本文: 张海川, 曾芳玲. 非完备空际间叠干扰下星基导航信号捕获性能分析[J]. 电子与信息学报, 2019, 41(3): 594-601. doi: 10.11999/JEIT180355
Haichuan ZHANG, Fangling ZENG. Performance Analysis of the Satellite-based Navigation Signal Acquisition under the Non-complete Spatial Overlapped Interference[J]. Journal of Electronics & Information Technology, 2019, 41(3): 594-601. doi: 10.11999/JEIT180355
Citation: Haichuan ZHANG, Fangling ZENG. Performance Analysis of the Satellite-based Navigation Signal Acquisition under the Non-complete Spatial Overlapped Interference[J]. Journal of Electronics & Information Technology, 2019, 41(3): 594-601. doi: 10.11999/JEIT180355

非完备空际间叠干扰下星基导航信号捕获性能分析

doi: 10.11999/JEIT180355
基金项目: 国家自然科学基金(61272333),国防科技重点实验室基金(9140C130502140C13068)
详细信息
    作者简介:

    张海川:男,1991年生,博士生,研究方向为阵列信号处理、自适应波束形成、星基定位接收机系统

    曾芳玲:女,1970年生,教授,主要研究方向为GPS信号对抗、无源定位、精确卫星时频同步等

    通讯作者:

    张海川 zhanghai4258@163.com

  • 中图分类号: TN965.5

Performance Analysis of the Satellite-based Navigation Signal Acquisition under the Non-complete Spatial Overlapped Interference

Funds: The National Natural Science Foundation China (61272333), The National Defense Dcience and Technology Key Laboratory Fund (9140C130502140C13068)
  • 摘要:

    该文针对星基定位接收机导航信号捕获的干扰问题,提出一种非完备空际间叠干扰信号模型。首先对提出的干扰模型以及非完备空际间叠引起的干扰裂变效应进行了阐述分析与推究证明,而后推导计算出了星基定位接收机输出信干噪比(SINR)与空际间叠长度的函数式,论证了两者函数单调性关系。仿真实验表明星基定位接收机输出信干噪比为空际间叠长度的单调增函数,短空际间叠长度干扰可抑制3维频码域相关峰突起,降消星基定位接收机捕获性能。

  • 图  1  自适应空域滤波系统模型

    图  2  不同Ra下波束方向图

    图  3  不同算法输出SINR性能比较

    图  4  不同Ra下相关捕获结果图

    图  5  不同阵元数下相关算法输出SINR性能比较

    表  1  仿真实验参数设置

    载波频率1.57542 GHz
    阵元间距0.5波长
    信道环境高斯白噪声信道
    干扰类型随机噪声干扰
    阵元数目8
    期望信号入射方位10°
    干扰信号入射方位50°
    阵列形状均匀线性阵列天线
    下载: 导出CSV
  • 刘志文, 王荔, 徐友根. 四元数域对合增广宽线性自适应波束形成[J]. 电子与信息学报, 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988

    LIU Wenzhi, WANG Li, and XU Yougen. Quaternion-valued widely linear adaptive beamforming via involution augmentation[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988
    钱宇宁, 曹欣荣, 陈亚伟, 等. 被动声呐盲分离自适应-自适应波束形成算法研究[J]. 电子与信息学报, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099

    QIAN Yuning, CAO Xinrong, CHEN Yawei, et al. Research on adaptive-adaptive beamforming algorithm based on blind separation for passive sonar[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099
    ASHWINI D and ZALAWADIA K. Performance analysis of LMS adaptive beamforming algorithm for smart antenna system[J]. International Journal of Computer Applications, 2018, 179(28): 34–37. doi: 10.5120/ijca2018916633
    KORAYEM R and BENDOUKHA S. A gradient descent implementation of the adaptive robust narrowband constrained LMS beamformer[J]. Signal Image & Video Processing, 2017(8): 1–8. doi: 10.1007/s11760-017-1180-x
    VOROBYOV S A, GERSHMAN A B, and LUO Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transations on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865
    XUE Yang, JU Lanxie, HUI Yongli, et al. Robust adaptive beamforming of coherent signals in the presence of the unknown mutual coupling[J]. IET Communications, 2018, 12(1): 75–81. doi: 10.1049/iet-com.2017.0314
    RAKWSH P, PRIYANKA S S, and KUMAR T K. Performance evaluation of beamforming techniques for speech enhancement[C]. International Conference on Signal Processing, Xiamen, China, 2017: 1–5.
    HAO Zhanghong, ZHAO Hongzhi, SHAO Shihai, et al. Time-varying single tone jamming suppression based on frequency interference cancellation[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 6(3): 395–404. doi: 10.14257/ijsip.2013.6.6.35
    朱林, 方胜良, 吴付祥. 分布式闪烁干扰下卫星数据链效能评估与仿真[J]. 信息工程大学学报, 2014, 15(6): 697–701. doi: 10.3969/j.issn.1671-0673.2014.06.009

    ZHU Lin, FANG Shengliang, and WU Fuxiang. Evaluation and simulation of the efficiency of satellite datalinks in the presence of distributing blinking jamming[J]. Journal of Information Engineering University, 2014, 15(6): 697–701. doi: 10.3969/j.issn.1671-0673.2014.06.009
    YANG Tatsen. Measurements of spatial coherence beamforming gain and diversity gain for underwater acoustic communications[C]. IEEE Oceans, Washington, DC, USA, 2005: 268–272.
    YANG Tatsen. A study of spatial processing gain in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2007, 32(3): 689–709. doi: 10.1109/JOE.2007.897072
    WILLIAM M C, JAMES F L, WILLIAM L S, et al. Sound transmission and spatial coherence in selected shallow-water areas: Measurements and theory[J]. Journal of Computational Acoustics, 2006, 14(2): 265–298. doi: 10.1142/S0218396X06003037
    LU Ming. A Toeplitz-induced mapping technique in sensor array processing[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1128–1139. doi: 10.1109/78.382398
    REDDI S S. Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time series[J]. Signal Processing, 1984, 7(1): 45–56. doi: 10.1016/0165-1684(84)90023-9
    刘聪锋, 廖桂生. 线性干扰参数约束的稳健LSMI波束形成算法[J]. 电子学报, 2009, 37(6): 1386–1392. doi: 10.3321/j.issn:0372-2112.2009.06.044

    LIU Congfeng and LIAO Guisheng. Robust LSMI beamforming algorithm under linear jammer parameter constraint[J]. Acta Electronica Sinica, 2009, 37(6): 1386–1392. doi: 10.3321/j.issn:0372-2112.2009.06.044
    HASSANIEN A, VOROBYOV S A, and WONG K M. Robust adaptive beamforming using sequential quadratic programming: An iterative solution to the mismatch problem[J]. IEEE Signal Processing Letters, 2008, 15: 733–736. doi: 10.1109/LSP.2008.2001115
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1614
  • HTML全文浏览量:  700
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-18
  • 修回日期:  2018-11-21
  • 网络出版日期:  2018-12-06
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回