高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于等距度量学习策略的行人重识别改进算法

周智恒 刘楷怡 黄俊楚 陈增群

周智恒, 刘楷怡, 黄俊楚, 陈增群. 一种基于等距度量学习策略的行人重识别改进算法[J]. 电子与信息学报, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336
引用本文: 周智恒, 刘楷怡, 黄俊楚, 陈增群. 一种基于等距度量学习策略的行人重识别改进算法[J]. 电子与信息学报, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336
Zhiheng ZHOU, Kaiyi LIU, Junchu HUANG, Zengqun CHEN. Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance[J]. Journal of Electronics & Information Technology, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336
Citation: Zhiheng ZHOU, Kaiyi LIU, Junchu HUANG, Zengqun CHEN. Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance[J]. Journal of Electronics & Information Technology, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336

一种基于等距度量学习策略的行人重识别改进算法

doi: 10.11999/JEIT180336
基金项目: 国家自然科学基金(U1401252, 61871188),国家重点研发计划(2018YFC0309400),中央高校基本科研业务费专项资金(2017MS062),广州市产学研协同创新重大专项(201604016133)
详细信息
    作者简介:

    周智恒:男,1977年生,教授,博士生导师,研究方向为模式识别与人工智能

    刘楷怡:女,1994年生,硕士生,研究方向为图像处理与模式识别

    黄俊楚:男,1994年生,博士生,研究方向为图像处理与模式识别

    陈增群:男,1995年生,本科生,研究方向为图像处理与模式识别

    通讯作者:

    周智恒 zhouzh@scut.edu.cn

  • 中图分类号: TP391.41

Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance

Funds: The National Natural Science Foundation of China (U1401252,61871188), The National Key R&D Program of China (2018YFC0309400), The Fundamental Research Funds for the Central Universities SCUT (2017MS062), Guangzhou City Science and Technology Research Projects (201604016133)
  • 摘要:

    为了提高行人重识别距离度量MLAPG算法的鲁棒性,该文提出基于等距度量学习策略的行人重识别Equid-MLAPG算法。 MLAPG算法中正负样本对在映射空间的分布不均衡导致间距超参数受负样本对距离影响更大,因此该文设计的Equid-MLAPG算法要求正样本对映射成为变换空间中的一个点,即正样本对在变换空间中距离为零,使算法收敛时正负样本对距离分布不存在交叉部分。实验表明Equid-MLAPG算法能在常用的行人重识别数据集上取得良好的实验效果,具有更好的识别率和广泛的适用性。

  • 图  1  MLAPG算法中$\mu $取值和训练过程中所有样本对马氏距离均值对比示意图

    图  2  对数逻辑损失函数变化趋势

    图  3  在不同限制条件下正负样本对距离情况

    图  4  正负样本分布区域重叠示意图

    图  5  交换空间中样本分类情况

    图  6  VIPeR数据集上Equid-MLAPG算法与其他距离度量算法CMC曲线图

    图  7  CUHK01数据集上Equid-MLAPG算法与其他距离度量算法CMC曲线图

    表  1  CUHK03数据集上多种距离度量算法对比

    算法检测标注 人工标注
    第1匹配率(%)第5匹配率(%)第10匹配率(%)第1匹配率(%)第5匹配率(%)第10匹配率(%)
    XQDA46.2578.9088.55 52.2082.2392.14
    MLAPG51.1583.5592.0557.9687.0994.74
    Nullspace53.7083.0590.3058.9085.6092.45
    Equid-MLAPG52.4185.2592.8458.7289.0795.28
    下载: 导出CSV

    表  2  Marlet1501,DukeMTMC-reID数据集上多种距离度量算法对比

    算法Market1501数据集 DukeMTMC-reID数据集
    第1匹配率(%)平均准确率(%)第1匹配率(%)平均准确率(%)
    XQDA43.2322.00 31.3717.17
    MLAPG42.5221.4536.5819.10
    Nullspace54.6029.8045.0226.11
    Equid-MLAPG44.2524.3839.2521.54
    下载: 导出CSV
  • ZHENG Liang, YANG Yi, and HAUPTMANN A G. Person re-identification: Past, present and future[OL]. arXiv preprint arXiv: 1610.02984, 2016.
    SHAH J H, LIN Mingqiang, and CHEN Zonghai. Multi-camera handoff for person re-identification[J]. Neurocomputing, 2016, 191: 238–248. doi: 10.1016/j.neucom.2016.01.037
    REHMAN S U, CHEN Zonghai, RAZA M, et al. Person re-identification post-rank optimization via hypergraph-based learning[J]. Neurocomputing, 2018, 287: 143–153. doi: 10.1016/j.neucom.2018.01.086
    PEDAGADI S, ORWELL J, VELASTIN S, et al. Local fisher discriminant analysis for pedestrian re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Protland, USA, 2013: 3318–3325.
    WEINBERGER K Q, BLITZER J, and SAUL L K. Distance metric learning for large margin nearest neighbor classification[C]. Advances in Neural Information Processing Systems. Vancouver, Canada, 2006: 1473–1480.
    DAVIS J V, KULIS B, JAIN P, et al. Information-theoretic metric learning[C]. Proceedings of the 24th International Conference on Machine Learning, Corvalis, USA, 2007: 209–216.
    DIKMEN M, AKBAS E, HUANG T S, et al. Pedestrian recognition with a learned metric[C]. Asian Conference on Computer Vision, Queenstown, New Zealand, 2010: 501–512.
    ZHENG Weishi, GONG Shaogang, and XIANG Tao. Person re-identification by probabilistic relative distance comparison[C]. Computer Vision and Pattern Recognition, IEEE, Colorado, USA, 2011: 649–656.
    KOESTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]. Computer Vision and Pattern Recognition (CVPR), Rhode Island, USA, 2012: 2288–2295.
    TAO Dapeng, JIN Lianwen, WANG Yongfei, et al. Person re-identification by regularized smoothing kiss metric learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1675–1685. doi: 10.1109/tcsvt.2013.2255413
    LIAO Shengcai, and LI S Z. Efficient PSD constrained asymmetric metric learning for person re-identification[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, USA, 2015: 3685–3693.
    NESTEROV Y. Introductory Lectures on Convex Optimization: A Basic Course[M]. New York, USA, Springer Science & Business Media, 2013: 15–20.
    TSENG P. On accelerated proximal gradient methods for convex-concave optimization[OL]. http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf.
    GRAY D and TAO Hai. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]. European Conference on Computer Vision, Marseille, France, 2008: 262–275.
    LI Wei, ZHAO Rui, and WANG Xiaogang. Human reidentification with transferred metric learning[C]. Asian Conference on Computer Vision. Daejeon, Korea, 2012: 31–44.
    LI Wei, ZHAO Rui, XIAO Tong, et al. Deepreid: Deep filter pairing neural network for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 152–159.
    ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, USA, 2015: 1116–1124.
    ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. IEEE International Conference on Computer Vision. Venice, Italy, 2017: 3774–3782.
    LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2197–2206.
    ZHANG Li, XIANG Tao, and GONG Shaogong. Learning a discriminative null space for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1239–1248.
    曾明勇, 吴泽明, 田畅, 等. 基于外观统计特征融合的人体目标再识别[J]. 电子与信息学报, 2014, 36(8): 1844–1851. doi: 10.3724/SP.J.1146.2013.01389

    ZENG Mingyong, WU Zeming, TIAN Chang, et al. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics &Information Technology, 2014, 36(8): 1844–1851. doi: 10.3724/SP.J.1146.2013.01389
    MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical gaussian descriptor for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1363–1372.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2324
  • HTML全文浏览量:  579
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-09-13
  • 网络出版日期:  2018-09-20
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回