高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于采样值随机压缩矩阵核空间的亚奈奎斯特采样重构算法

盖建新 杜昊辰 刘琦 童子权

盖建新, 杜昊辰, 刘琦, 童子权. 基于采样值随机压缩矩阵核空间的亚奈奎斯特采样重构算法[J]. 电子与信息学报, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323
引用本文: 盖建新, 杜昊辰, 刘琦, 童子权. 基于采样值随机压缩矩阵核空间的亚奈奎斯特采样重构算法[J]. 电子与信息学报, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323
Jianxin GAI, Haochen DU, Qi LIU, Ziquan TONG. Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix[J]. Journal of Electronics & Information Technology, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323
Citation: Jianxin GAI, Haochen DU, Qi LIU, Ziquan TONG. Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix[J]. Journal of Electronics & Information Technology, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323

基于采样值随机压缩矩阵核空间的亚奈奎斯特采样重构算法

doi: 10.11999/JEIT180323
基金项目: 国家自然科学基金(61501150),黑龙江省自然科学基金(QC2014C074)
详细信息
    作者简介:

    盖建新:男,1980年生,博士,副教授,研究方向为压缩感知、亚奈奎斯特采样理论、频谱感知技术等

    杜昊辰:男,1991年生,硕士生,研究方向为电子与通信工程

    刘琦:男,1994年生,硕士生,研究方向为仪器仪表工程

    童子权:男,1968年生,教授,研究方向为现代电子测量仪器与系统、信号处理等

    通讯作者:

    盖建新 gjx800608@126.com

  • 中图分类号: TP391

Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix

Funds: The National Natural Science Foundation of China (61501150), The Natural Science Foundation of Heilongjiang Province (QC2014C074)
  • 摘要:

    针对现有调制宽带转换器亚奈奎斯特采样重构算法性能不高问题,该文提出一种基于采样值核空间的支撑重构算法和随机压缩降秩方法,将两者结合得到一种高性能采样重构算法。首先利用随机压缩变换在不改变未知矩阵稀疏特性的前提下将采样方程转化为多个新的多测量向量问题,然后利用采样值矩阵核空间与采样矩阵支撑正交的关系获取联合稀疏支撑集,最后通过伪逆完成重构。从理论和实验两个方面对所提方法进行了分析和验证。数值实验表明,与传统重构算法相比,所提算法提高了重构成功率、降低了高概率重构所需的通道数,而且重构性能总体上随压缩次数增加而提高。

  • 图  1  稀疏宽带信号频谱示意图

    图  2  MWC系统框图

    图  3  MWC采样方程示意图

    图  4  不同条件下采样值矩阵的秩随通道数的变化情况

    图  5  不同条件下随机压缩后采样值矩阵秩的统计结果

    图  6  不同压缩次数时RCKS重构性能随通道数的变化

    图  7  RCKS重构成功率随压缩次数的变化

    图  8  不同信噪比时RCKS(r = 4)与CSMUSIC, SCoSaMP, OMPMMV重构成功率比较

    图  9  RCKS(r = 4)算法重构效果

  • PARK J, JANG J, IM S, et al. A sub-nyquist radar electronic surveillance system[J]. IEEE Access, 2018, 6: 10080–10091. doi: 10.1109/ACCESS.2018.2799304
    QIN Zhijin, GAO Yue, PLUMBLEY M D, et al. Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3106–3117. doi: 10.1109/TSP.2015.2512562
    郑仕链, 杨小牛. 用于调制宽带转换器压缩频谱感知的重构失败判定方法[J]. 电子与信息学报, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127

    ZHENG Shilian and YANG Xiaoniu. A reconstruction failure detection scheme for modulated wideband converter based compressed spectrum sensing[J]. Journal of Electronics &Information Technology, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127
    DONOHO D L. Compressed sensing[J]. IEEE Transaction on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    BARANIUK R G. More is less: Signal processing and the data deluge[J]. Science, 2011, 331(6018): 717–719. doi: 10.1126/science.1197448
    LASKA J N, KIROLOS S, DUARTE M F, et al. Theory and implementation of an analog-to-information converter using random demodulation[C]. IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007: 1959–1962.
    FARDAD M, SAYEDI S M, and YAZDIAN E. Hardware implementation of iterative method with adaptive thresholding for random sampling recovery of sparse signals[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(5): 867–877. doi: 10.1109/TVLSI.2018.2791351
    REN Shiyu, ZENG Zhimin, GUO Caili, et al. A low complexity sensing algorithm for wideband sparse spectra[J]. IEEE Communications Letters, 2017, 21(1): 92–95. doi: 10.1109/LCOMM.2016.2616471
    MISHALI M and ELDAR Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375–391. doi: 10.1109/JSTSP.2010.2042414
    ADAMS D, ELDAR Y C, and MURMANN B. A mixer front end for a four channel modulated wideband converter with 62-dB blocker rejection[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5): 1286–1294. doi: 10.1109/JSSC.2017.2647941
    LEXA M A, DAVIES M E, and THOMPSON J S. Reconciling compressive sampling systems for spectrally sparse continuous-time signals[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 155–171. doi: 10.1109/TSP.2011.2169408
    ZHANG Ruoyu, ZHAO Honglin, JIA Shaobo, et al. Sparse multi-band signal recovery based on support refining for modulated wideband converter[C]. IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 2016: 304–309.
    COTTER F S, RAO D B, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172
    CHEN Jie and HUO Xiaoming. Theoretical results on sparse representations of multiple-measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634–4643. doi: 10.1109/TSP.2006.881263
    BLANCHARD J D, CERMAK M, HANLE D, et al. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694–1704. doi: 10.1109/TSP.2014.2301980
    KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529
    MISHALI M and ELDAR Y C. Reduce and boost: Recovering arbitrary sets of jointly sparse vectors[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4692–4702. doi: 10.1109/TSP.2008.927802
  • 加载中
图(9)
计量
  • 文章访问数:  2144
  • HTML全文浏览量:  875
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-10-29
  • 网络出版日期:  2018-11-08
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回