高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机学习的接入网服务功能链部署算法

陈前斌 杨友超 周钰 赵国繁 唐伦

陈前斌, 杨友超, 周钰, 赵国繁, 唐伦. 基于随机学习的接入网服务功能链部署算法[J]. 电子与信息学报, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310
引用本文: 陈前斌, 杨友超, 周钰, 赵国繁, 唐伦. 基于随机学习的接入网服务功能链部署算法[J]. 电子与信息学报, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310
Qianbin CHEN, Youchao YANG, Yu ZHOU, Guofan ZHAO, Lun TANG. Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning[J]. Journal of Electronics & Information Technology, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310
Citation: Qianbin CHEN, Youchao YANG, Yu ZHOU, Guofan ZHAO, Lun TANG. Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning[J]. Journal of Electronics & Information Technology, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310

基于随机学习的接入网服务功能链部署算法

doi: 10.11999/JEIT180310
基金项目: 国家自然科学基金(61571073)
详细信息
    作者简介:

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络

    杨友超:男,1993年生,硕士生,研究方向为网络虚拟化和切片资源分配

    周钰:男,1993年生,硕士生,研究方向为切片资源分配和深度学习

    赵国繁:女,1993年生,硕士生,研究方向为5G网络切片中的资源分配、可靠性

    唐伦:男,1973年生,教授,博士生导师,主要研究方向为新一代无线通信网络、异构蜂窝网络

    通讯作者:

    陈前斌 chenqb@cqupt.edu.cn

  • 中图分类号: TN929.5

Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning

Funds: The National Natural Science Foundation of China (61571073)
  • 摘要:

    针对5G云化接入网场景下物理网络拓扑变化引起的高时延问题,读文提出一种基于部分观察马尔可夫决策过程(POMDP)部分感知拓扑的接入网服务功能链(SFC)部署方案。该方案考虑在5G接入网C-RAN架构下,通过心跳包观测机制感知底层物理网络拓扑变化,由于存在观测误差无法获得全部真实的拓扑情况,因此采用基于POMDP的部分感知和随机学习而自适应动态调整接入网切片的SFC的部署,优化SFC在接入网侧的时延。为了解决维度灾问题,采用基于点的混合启发式值迭代算法求解。仿真结果表明,该模型可以优化部署接入网侧的SFC,并提高接入网吞吐量和资源利用率。

  • 图  1  系统模型

    图  2  接入网VNF部署方式

    图  3  3种SFC部署方案的吞吐量

    图  4  3种SFC资源分配算法方案的资源利用率

    图  5  3种POMDP求解算法对比

    图  6  3个切片的接入网VNF部署方式统计图

    表  1  算法1:更新探索信念点集合${{{B}_{\rm su}$

     (1) 用式(13)计算被扩点集${B^{{\rm pr}}$
     (2) for all ${{b}} \in {B^{{\rm pr}}$ do
     (3) 用式(14)计算su$({{b}})$
     (4) 用式(15)计算离${B_{{\rm su}}$最远的后继信念点${{{b}}''}$
     (5) end for
     (6) 清空集合${V'}$的元素
     (7) for all ${{b}} \in {B_{{\rm su}}$ do
     (8) 用式(17)计算下界向量${{{α}} _{{b}}$并加入${V'}$中
     (9) end for
     (10) 将下界集合$\underline V $ 更新为${V'}$
     (11) for all ${{b}} \in {B_{{\rm su}}$ do
     (12) ${V_{{{co}}} \leftarrow \{ {{b}}|\exists s \in S,b(s) = 1\} $
     (13) ${v^0_{{b}}\leftarrow \displaystyle\sum\limits_{{b'} \in {V_{\rm co}}} {v({{{b}}'}) \cdot {{b}}} $
     (14) for all $ < {b_i},{v_i} > \in {B_{{\rm su}} - {V_{{\rm co}}$ do
     (15) $c({b_i}) \leftarrow \mathop {\min }\limits_{s \in S} \frac{{b(s)}}{{{b_i}(s)}}$
     (16) $f({b_i}) \leftarrow {v_i} - \sum\limits_{{{b}'} \in {V_{{\rm co}}}} {v({{{b}'}){b_i}(s)} $
     (17) end for
     (18) $v \leftarrow {v^0_{b}} + \mathop {\displaystyle\min }_i c({b_i})f({b_i})$并将点值对$ < {{b}},v > $加入上界集合$\mathop { V}\limits\!\!\!\!^{\displaystyle{-} } $
     (19) end for
    下载: 导出CSV

    表  2  算法2:基于${{{B}_{{\rm su}}$更新值函数向量集${{{Γ} _{{{t +}}1}$

     (1) for all ${{b}} \in {B_{{{\rm su}}$ do
     (2) 向量集合${{{Γ} _{t + 1,\chi }} \leftarrow \varnothing $
     (3) for all $a \in A$ do
     (4) 向量${{{Γ} _{t + 1,\beta }} \leftarrow 0$
     (5) for all $z \in Z$ do
     (6) 用式(18)计算${{Γ} _{t + 1}^{a,z}$
     (7) ${{{Γ} _{t + 1,\beta }} \leftarrow \mathop {\arg \max }_{{α} \in {{Γ} _{t + 1}^{a,z}}} {{b}} \cdot {{α}} + {{Γ} _1^a$
     (8) end for
     (9) 将向量${{{Γ} _{t + 1,\beta }}$加入集合${{{Γ} _{t + 1,\chi }}$中
     (10) end for
     (11) 将${{{Γ} _{t + 1,\chi }}$中与${{b}}$相乘最大的向量加入${{{Γ} _{t + 1}}$
     (12) end for
    下载: 导出CSV
  • SHARMA S, MILLER R, and FRANCINI A. A cloud-native approach to 5G network slicing[J]. IEEE Communications Magazine, 2017, 55(8): 120–127. doi: 10.1109/MCOM.2017.1600942
    ZHANG Haijun, LIU Na, and CHU Xiaoli. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenge[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.217.1600940
    KATSALIS K, NIKAEIN N, and SCHILLER E. Network slices toward 5G communications: Slicing the LTE network[J]. IEEE Communications Magazine, 2017, 55(8): 146–154. doi: 10.1109/MCOM.2017.1600936
    FOUKAS X, PATOUNAS G, and ELMOKASHFI A. Network slicing in 5G: Survey and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 94–100. doi: 10.1109/MCOM.2017.1600951
    LI Xin and SAMAKA M. Network slicing for 5G: Challenges and opportunities[J]. IEEE Internet Computing, 2017, 21(5): 20–27. doi: 10.1109/MIC.2017.3481355
    MIJUMBI R, SERRAT J, and GORRICHO J L. Network function virtualization: state-of-the-art and research challenges[J]. IEEE Communications Surveys Tutorials, 2017, 18(1): 236–262. doi: 10.1109/COMST.2015.2477041
    GIL J H and BOTERO J F. Resource allocation in NFV: A comprehensive survey[J]. IEEE Transactions on Network and Service Management, 2016, 13(3): 518–532. doi: 10.1109/TNSM.2016.2598420
    HUANG Huawei and SONG Guo. Service chaining for hybrid network function[J]. IEEE Transactions on Cloud Computing, 2017. doi: 10.1109/TCC.2017.2721401
    QU Long, ASSI C, and SHABAN K. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
    MAHMOOD A M, AL-YASIRI A, and ALANI O Y K. A new processing approach for reducing computational complexity in cloud-RAN mobile networks[J]. IEEE Access, 2018, 6: 6927–6946. doi: 10.1109/ACCESS.2017.2782763
    CHIH I. RAN revolution with NGFI (xhaul) for 5G[J]. Journal of Lightwave Technology, 2018, 36(2): 541–550. doi: 10.1109/JLT.2017.2764
    ZHANG Nan, LIU Yafeng, and FARMANBAR H. Network slicing for service-oriented networks under resource constraints[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2512–2521. doi: 10.1109/JSAC.2017.2760147
    HAYASHIBARA N, DEFAGO X, and YARED R. The φ accrual failure detector[C]. IEEE International Symposium on Reliable Distributed Systems, Florianpolis, Brazil, 2014: 66–78.
    刘峰. 基于部分可观察马尔科夫决策过程的序列规划问题的研究[D]. [博士论文], 南京大学, 2015.

    LIU Feng. A study of sequence planning based on partially observable markov decision process[D]. [Ph.D. dissertation], Nanjing University, 2015.
    CILDEN E and POLAT F. Toward generalization of automated temporal abstraction to partially observable reinforcement learning[J]. IEEE Transactions on Cybernetics, 2017, 45(8): 1414–1425. doi: 10.1109/TCYB.2014.2352038
    ZHENG Qiang, ZHENG Kan, ZHANG Haijun, et al. Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7857–7867. doi: 10.1109/TVT.2016.2538461
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1687
  • HTML全文浏览量:  815
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-09-03
  • 网络出版日期:  2018-09-12
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回