高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协峭度张量的高光谱图像异常检测

孟令博 耿修瑞

孟令博, 耿修瑞. 基于协峭度张量的高光谱图像异常检测[J]. 电子与信息学报, 2019, 41(1): 150-155. doi: 10.11999/JEIT180280
引用本文: 孟令博, 耿修瑞. 基于协峭度张量的高光谱图像异常检测[J]. 电子与信息学报, 2019, 41(1): 150-155. doi: 10.11999/JEIT180280
Lingbo MENG, Xiurui GENG. A Hyperspectral Imagery Anomaly Detection Algorithm Based on Cokurtosis Tensor[J]. Journal of Electronics & Information Technology, 2019, 41(1): 150-155. doi: 10.11999/JEIT180280
Citation: Lingbo MENG, Xiurui GENG. A Hyperspectral Imagery Anomaly Detection Algorithm Based on Cokurtosis Tensor[J]. Journal of Electronics & Information Technology, 2019, 41(1): 150-155. doi: 10.11999/JEIT180280

基于协峭度张量的高光谱图像异常检测

doi: 10.11999/JEIT180280
详细信息
    作者简介:

    孟令博:女,1989年生,博士生,研究方向为高光谱图像特征提取及异常检测

    耿修瑞:男,1965年生,研究员,研究方向为高光谱图像处理技术

    通讯作者:

    耿修瑞 xrgeng@mail.ie.ac.cn

  • 中图分类号: TP75

A Hyperspectral Imagery Anomaly Detection Algorithm Based on Cokurtosis Tensor

  • 摘要:

    高光谱图像中的异常像元往往具有在图像中出现的概率低和游离于背景数据云团之外的特点,如何“自动”确定这些异常像元是高光谱遥感图像处理中的一个重要研究方向。经典的高光谱异常检测方法一般从图像的统计特性入手,广泛应用的RXD异常检测算法通过计算图像的2阶统计特征,可以直接给出异常点的分布情况,算法复杂度低,但缺点是没有考虑到图像的高阶统计信息。基于独立成分分析的异常检测算法虽然考虑了高阶统计量对异常点的敏感性,但需要反复迭代提取异常成分后,再对提取后的成分进行异常检测。该文提出一种基于协峭度张量的异常检测算法,该算法不需要事先提取异常成分,可以直接对观测像元进行逐一检测,从而给出异常点的分布情况。基于模拟数据和真实数据的实验结果表明,该方法能够在检测出异常像元的同时更好地压制背景信息、减小虚警率,从而提高异常检测精度。

  • 图  1  数据在某个方向的偏度值(红色线条长度)和峭度值(蓝色线条长度)

    图  2  模拟数据各波段灰度图

    图  3  异常检测结果灰度图

    图  4  COSD, RXD, COKD, KPCA-RXD算法的ROC曲线

    图  5  真实的高光谱图像检测结果

    图  6  4种异常检测算法的ROC曲线

    表  1  4种异常检测算法的AUC

    算法AUC
    COKD0.9997
    RXD0.9934
    COSD0.9996
    KPCA-RXD0.9936
    下载: 导出CSV

    表  2  4种异常检测算法的AUC

    算法AUC
    COKD0.9832
    RXD0.9779
    COSD0.9830
    KPCA-RXD0.9778
    下载: 导出CSV
  • LÜ Qi, NIU Xin, DOU Yong, et al. Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 434–438. doi: 10.1109/LGRS.2016.2517178
    HEIDEN U, IWASAKI A, MULLER A, et al. Foreword to the special issue on hyperspectral remote sensing and imaging spectroscopy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 3904–3908. doi: 10.1109/JSTARS.2016.2610199
    LI Wei and DU Qian. A survey on representation-based classification and detection in hyperspectral remote sensing imagery[J]. Pattern Recognition Letters, 2016, 83: 115–123. doi: 10.1016/j.patrec.2015.09.010
    VERACINI T, MATTEOLI S, DIANI M, et al. Fully unsupervised learning of Gaussian mixtures for anomaly detection in hyperspectral imagery[C]. Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 2009: 596–601. doi: 10.1109/ISDA2009220.
    SALEM M B, ETTABAA K S, and BOUHLEL M S. Anomaly detection in hyperspectral images based spatial spectral classification[C]. International Conference on Sciences of Electronics, Technologies of Information and Telecommunications, Hammamet, Tunisia, 2017: 166–170. doi: 10.1109/SETIT.2016.7939860.
    ZHANG Lili and ZHAO Chunhui. Hyperspectral anomaly detection based on spectral-spatial background joint sparse representation[J]. European Journal of Remote Sensing, 2017, 50(1): 362–376. doi: 10.1080/22797254.2017.1331697
    THEILER J and ZIEMANN A K. Right spectrum in the wrong place: A framework for local hyperspectral anomaly detection[J]. Electronic Imaging, 2016, 2016(19): 1–9. doi: 10.2352/ISSN.2470-1173.2016.19.COIMG-160
    CHIANG S S, CHANG C I, and GINSBERG I W. Unsupervised target detection in hyperspectral images using projection pursuit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1380–1391. doi: 10.1109/36.934071
    WANG Lijing, GAO Kun, CHENG Xinman, et al. A hyperspectral imagery anomaly detection algorithm based on Gauss-Markov model[C]. Fourth International Conference on Computational and Information Sciences (ICCIS), Chongqing, China, 2012: 135–138. doi: 10.1109/ICCIS.2012.21.
    耿修瑞. 高光谱遥感图像目标探测与分类技术研究[D]. [博士论文], 中国科学院遥感与数字地球研究所, 2005: 81–91.

    GENG Xiurui. Target detection and classification for hyperspectral imagery[D]. [Ph. D. dissertation], Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2015: 81–91.
    TAGHIPOUR A and GHASSEMIAN H. Hyperspectral anomaly detection using attribute profiles[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1136–1140. doi: 10.1109/LGRS.2017.2700329
    ZHANG Xing, WEN Gongjian, and DAI Wei. A tensor decomposition-based anomaly detection algorithm for hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5801–5820. doi: 10.1109/TGRS.2016.2572400
    TERREAUX E, OVARLEZ J P, and PASCAL F. Anomaly detection and estimation in hyperspectral imaging using random matrix theory tools[C]. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, 2016: 169–172. doi: 10.1109/CAMSAP.2015.7383763.
    XUN Lina and FANG Yonghua. Anomaly detection based on high-order statistics in hyperspectral imagery[C]. The Sixth World Congress on IEEE Intelligent Control and Automation, Dalian, China, 2006: 10416–10419. doi: 10.1109/WCICA.2006.1714044.
    REN Hsuan and CHANG Yang Lang. A parallel approach for initialization of high-order statistics anomaly detection in hyperspectral imagery[C]. IEEE International Geosciences and Remote Sensing Symposium, Boston, USA, 2008: 1017–1020. doi: 10.1109/IGARSS.2008.4779170.
    CARDOSO J F. Eigen-structure of the fourth-order cumulate tensor with application to the blind source separation problem[C]. International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, USA, 1990: 2655–2658. doi: 10.1109/ICASSP.1990.116165.
    OSAKO K, MORI Y, TAKAHASHI Y, et al. Fast convergence blind source separation based on frequency subband interpolation by null beamforming[C]. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, USA, 2007. doi: 10.1109/ASPAA.2007.4392999.
    GU Yanfeng, LIU Ying, and ZHANG Ye. A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 43–47. doi: 10.1109/LGRS.2007.907304
    成宝芝, 赵春晖, 王玉磊. 基于四阶累积量的波段子集高光谱图像异常检测[J]. 光电子·激光, 2012, 23(8): 1582–1588.

    CHENG Baozhi, ZHAO Chunhui, and WANG Yulei. Abnormal detection of hyperspectral images for band subsets based on fourth order cumulant[J]. Journal of Optoelectronics·Laser, 2012, 23(8): 1582–1588.
    成宝芝. 基于光谱特性的高光谱图像异常目标检测算法研究[D]. [博士论文], 哈尔滨工程大学, 2014.

    CHENG Baozhi. Abnormal target detection algorithm for hyperspectral images based on spectral characteristics[D]. [Ph.D. dissertation], Harbin Engineering University, 2014.
    GENG Xiurui, SUN Kang, JI Luyan, et al. A high-order statistical tensor based algorithm for anomaly detection in hyperspectral imagery[J]. Scientific Reports, 2014, 4: 6869–6869. doi: 10.1038/srep06869
    GENG Xiurui, JI Luyan, and SUN Kang. Principal skewness analysis: Algorithm and its application for multispectral/hyperspectral images indexing[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1821–1825. doi: 10.1109/LGRS.2014.2311168
    GENG Xiurui, JI Luyan, ZHAO Yongchao, et al. A small target detection method for the hyperspectral image based on Higher Order Singular Value Decomposition (HOSVD)[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1305–1308. doi: 10.1109/LGRS.2013.2238504
    孙康. 高光谱图像波段选择技术研究[D]. [博士论文], 中国科学院电子学研究所, 2015: 123–160.

    SUN Kang. Research on band selection method for hyperspectral imagery[D]. [Ph.D. dissertation], Institute of Electrics, Chinese Academy of Sciences, 2015: 123–160.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1880
  • HTML全文浏览量:  603
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-10-18
  • 网络出版日期:  2018-10-24
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回