Metasurface Antenna Design with Ultra-wideband RCS Reduction
-
摘要:
该文设计了两种人工磁导体(AMC)单元,在8~20 GHz的超宽频带内,两种AMC结构能够实现180°±37° 的反射相位差,将这两种单元组成棋盘结构时,能够实现入射电磁波的散射场相消,从而在超宽的频带内实现棋盘表面法向雷达散射截面(RCS)的显著减缩。同时,利用超表面天线的概念,设计馈电网络,将设计的AMC结构用做天线,仿真发现在9.08~10.30 GHz的范围内,天线的S11小于–10 dB,可以实现天线的有效辐射。实测结果和仿真吻合较好,因此该文的棋盘结构可以实现具有RCS减缩特性的天线设计。
Abstract:In this paper, two novel Artificial Magnetic Conductor (AMC) structures, based on circular loop patch and substrate, are designed to realize 180° reflection phase difference in a wide frequency band. These two AMCs’ reflection phase property is applied to redirecting the scattering fields of a radar target to reduce its Radar Cross Section (RCS). This method of RCS reduction can be realized by covering with a chessboard surface composed of two proposed AMC structures, so the RCS reduction in a wide frequency band can be achieved as well. Compared with the same-sized metallic surface, this proposed chessboard surface can reduce RCS drastically from 8 to 20 GHz under normally incident waves, and the RCS also can be reduced under obliquely incident waves. Meanwhile, this surface also can be used as antenna. By precisely designing feed network, the metasurface antenna can be designed. This antenna also has a low profile. The simulated impedance matching frequency band is from 9.08 to 10.30 GHz. Excellent agreement is obtained between simulation and measurement for metasurface antenna and chessboard surface. Such method gives a method for integrated design of antenna and metasurface, so the RCS reduction can be achieved, at the same time the radiation properties can be maintained.
-
Key words:
- Antenna /
- Chessboard surface /
- RCS reduction
-
TRETYAKOV S A. Metasurfaces for general transformations of electromagnetic fields[J]. Philosophical Transactions A, 2017, 373(2049): 1–8. doi: 10.1098/rsta.2014.0362 GLYBOVSKI S B, TRETYAKOV S A, BWLOV P A, et al. Metasurfaces: From microwaves to visible[J]. Physics Reports, 2016, 634: 1–72. doi: 10.1016/j.physrep.2016.04.004 李文惠, 张介秋, 屈绍波, 等. 基于极化旋转超表面的圆极化天线设计[J]. 物理学报, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101LI Wenhui, ZHANG Jieqiu, QU Shaobo, et al. A circular polarization antenna designed based on the polarization conversion metasurface[J]. Acta Physica Sinica, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101 EPSTEIN A and ELEFTHERIADES G V. Huygens’ metasurfaces via the equivalence principle: Design and applications[J]. Journal of the Optical Society of America B, 2016, 33(2): A31–A42. doi: 10.1364/JOSAB.33.000A31 ZHENG Yuejun, ZHOU Yulong, GAO Jun, et al. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression[J]. Scientific Reports, 2017, 7: 16137. doi: 10.1038/s41598-017-16105-x ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954–2963. doi: 10.1109/TAP.2016.2562665 CHAURASIYA D, GHOSH S, BHATTACHARYYA S, et al. Compact multi-band polarisation-insensitive metamaterial absorber[J]. IET Microwaves, Antennas and Propagation, 2016, 10(1): 94–101. doi: 10.1049/iet-map.2015.0220 LIU Shuo and CUI Tiejun. Flexible controls of scattering clouds using coding metasurfaces[J]. Scientific Reports, 2016, 6: 37545. doi: 10.1038/srep37545 CHEN Wengang, BALANIS C A, and BIRTCHER C R. Checkerboard EBG surfaces for wideband radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6): 2636–2645. doi: 10.1109/TAP.2015.2414440 PAQUAY M, IRIARTE J C, EDERRA I, et al. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3630–3638. doi: 10.1109/TAP.2007.910306 CHEN Wengang, BALANIS C A, and BIRTCHER C R. Dual wide-band checkerboard surfaces for radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 4133–4138. doi: 10.1109/TAP.2016.2583505 MIGHANI M and DADASHZADEH G. Broadband RCS reduction using a novel double layer chessboard AMC surface[J]. Electronic Letters, 2016, 52(14): 1253–1255. doi: 10.1049/el.2016.1214 LIU Ying, LI Kun, JIA Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326–331. doi: 10.1109/TAP.2015.2497352 ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband difusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm[J]. Scientific Reports, 2016, 6: 23896. doi: 10.1038/srep23896 ESMAELI S H and SEDIGHY S H. Wideband radar cross-section reduction by AMC[J]. Electronic Letters, 2016, 52(1): 70–71. doi: 10.1049/el.2015.3515 CUI Tiejn, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Applications, 2014, 3: e218. doi: 10.1038/lsa.2014.99 LIU Shuo and CUI Tiejun. Flexible controls of terahertz waves using coding and programmable metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 4700312. doi: 10.1109/JSTQE.2016.2599273 LIU Shuo, CUI Tiejun, ZHANG Lei, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3: 1600156. doi: 10.1002/advs.201600156 GAO Lihua, CHENG Qiang, YANG Jing, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science and Applications, 2015, 4: e324. doi: 10.1038/lsa.2015.97 张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017, 10(1): 1–12. doi: 10.3788/CO.20171001ZHANG Lei, LIU Shuo, and CUI Tiejun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1–12. doi: 10.3788/CO.20171001 ZANG Lei, WAN Xiang, LIU Shuo, et al. Realization of low scattering for a high-gain fabry-perot antenna using coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(7): 3374–3383. doi: 10.1109/TAP.2017.2700874 LI Kun, LIU Ying, JIA Yongtao, et al. A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4288–4292. doi: 10.1109/TAP.2017.2710231 SIMONE G, FILIPPO C, and AGOSTINO M. Wideband radar cross section reduction of slot antennas arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 163–173. doi: 10.1109/TAP.2013.2287888 LIU Ying, HAO Yuwen, LI Kun, et al. Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 80–83. doi: 10.1109/LAWP.2015.2430363 BADAWE M E, ALMONEEF T S, and RAMAHI O M. A true metasurface antenna[J]. Scientific Reports, 2015, 6: 19268. doi: 10.1038/srep19268 期刊类型引用(14)
1. 张盛峰,袁强,陈会丹,黄胜. EONs中一种混合路径专有保护算法. 光通信研究. 2021(02): 20-25 . 百度学术
2. 胡竣涛,时小虎,马德印. 基于均值漂移和遗传算法的护工调度算法. 广西师范大学学报(自然科学版). 2021(03): 27-39 . 百度学术
3. 巨子琪,兰宏伟,宰晨光. 轨道交通车辆踏面制动闸调器螺杆连接优化研究. 自动化与仪器仪表. 2020(12): 70-74 . 百度学术
4. 赵必游,张善辉,王进帅. 配电系统弹性光网络频谱整理优化算法. 电信科学. 2019(02): 43-50 . 百度学术
5. 黄正鹏,王力,张仕学,余廷忠,张起荣. 基于传统遗传和数据压缩算法的冗余光纤数据存储优化. 激光杂志. 2019(03): 135-139 . 百度学术
6. 程光德,肖瑜. 基于用户满意度的光网络数据路由机制设计. 激光杂志. 2019(04): 118-121 . 百度学术
7. 王鹏辉,张宁,肖明明. 基于节点重要度的路由选择与频谱分配算法. 计算机工程与应用. 2019(13): 106-111+259 . 百度学术
8. 马学森,朱建,谈杰,唐昊,周江涛. 多头绒泡菌预处理的改进Q学习算法求解最短路径问题. 电子测量与仪器学报. 2019(05): 148-157 . 百度学术
9. 施达雅,余庚. 弹性光网络中碎片问题的研究. 光通信技术. 2018(02): 16-19 . 百度学术
10. 田建勇,石林江. 基于Kalman算法的光纤网络流量在线预测模型. 激光杂志. 2018(09): 110-114 . 百度学术
11. 刘焕淋,胡浩,熊翠连,陈勇,向敏,马跃. 基于时频联合碎片感知的资源均衡虚拟光网络映射算法. 电子与信息学报. 2018(10): 2345-2351 . 本站查看
12. 刘焕淋,张明佳,陈勇,王欣. 频谱可用性和保护带宽共享度感知的弹性光网络生存性多路径策略. 电子与信息学报. 2017(10): 2472-2478 . 本站查看
13. 李汪丽. 通信链接无线终端资源传输路径目标识别仿真. 计算机仿真. 2017(10): 177-180 . 百度学术
14. 魏星. 基于改进人工鱼群算法的光网络最优环路径搜索研究. 计算机与数字工程. 2017(04): 650-654 . 百度学术
其他类型引用(11)
-