高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有超宽带RCS减缩特性的天线设计

吉地辽日 曹祥玉 高军

吉地辽日, 曹祥玉, 高军. 具有超宽带RCS减缩特性的天线设计[J]. 电子与信息学报, 2019, 41(1): 115-122. doi: 10.11999/JEIT180254
引用本文: 吉地辽日, 曹祥玉, 高军. 具有超宽带RCS减缩特性的天线设计[J]. 电子与信息学报, 2019, 41(1): 115-122. doi: 10.11999/JEIT180254
Liaori JIDI, Xiangyu CAO, Jun GAO. Metasurface Antenna Design with Ultra-wideband RCS Reduction[J]. Journal of Electronics & Information Technology, 2019, 41(1): 115-122. doi: 10.11999/JEIT180254
Citation: Liaori JIDI, Xiangyu CAO, Jun GAO. Metasurface Antenna Design with Ultra-wideband RCS Reduction[J]. Journal of Electronics & Information Technology, 2019, 41(1): 115-122. doi: 10.11999/JEIT180254

具有超宽带RCS减缩特性的天线设计

doi: 10.11999/JEIT180254
基金项目: 国家自然科学基金(61471389, 61671464, 61701523)
详细信息
    作者简介:

    吉地辽日:男,1993年生,博士生,研究方向为超材料与超材料的天线应用

    曹祥玉:女,1964年生,教授,博士生导师,研究方向为天线与电磁兼容、电磁超材料、计算电磁学等

    高军:男,1962年生,教授,硕士生导师,研究方向为电磁散射理论、电磁超材料、天线设计等

    通讯作者:

    吉地辽日 jidiliaorikdy@163.com

  • 中图分类号: TN823

Metasurface Antenna Design with Ultra-wideband RCS Reduction

Funds: The National Natural Science Foundation of China (61471389, 61671464, 61701523)
  • 摘要:

    该文设计了两种人工磁导体(AMC)单元,在8~20 GHz的超宽频带内,两种AMC结构能够实现180°±37° 的反射相位差,将这两种单元组成棋盘结构时,能够实现入射电磁波的散射场相消,从而在超宽的频带内实现棋盘表面法向雷达散射截面(RCS)的显著减缩。同时,利用超表面天线的概念,设计馈电网络,将设计的AMC结构用做天线,仿真发现在9.08~10.30 GHz的范围内,天线的S11小于–10 dB,可以实现天线的有效辐射。实测结果和仿真吻合较好,因此该文的棋盘结构可以实现具有RCS减缩特性的天线设计。

  • 图  2  AMC结构的反射特性

    图  1  AMC结构单元

    图  3  理论计算的RCS减缩随两种AMC结构相位差的变化

    图  4  两种AMC结构的反射相位差

    图  5  理论计算的RCS减缩随频率的变化

    图  6  设计的棋盘表面

    图  7  RCS减缩性能

    图  8  散射方向图比较

    图  9  设计的天线

    图  10  天线S11参数

    图  11  天线在9.62 GHz处的仿真方向图

    图  12  天线在9.62 GHz处的仿真辐射方向图

    图  13  天线最大辐射方向上的增益

    图  14  天线测量值

    图  15  天线9.62 GHz实测方向图

    图  16  棋盘表面的散射测量

  • TRETYAKOV S A. Metasurfaces for general transformations of electromagnetic fields[J]. Philosophical Transactions A, 2017, 373(2049): 1–8. doi: 10.1098/rsta.2014.0362
    GLYBOVSKI S B, TRETYAKOV S A, BWLOV P A, et al. Metasurfaces: From microwaves to visible[J]. Physics Reports, 2016, 634: 1–72. doi: 10.1016/j.physrep.2016.04.004
    李文惠, 张介秋, 屈绍波, 等. 基于极化旋转超表面的圆极化天线设计[J]. 物理学报, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101

    LI Wenhui, ZHANG Jieqiu, QU Shaobo, et al. A circular polarization antenna designed based on the polarization conversion metasurface[J]. Acta Physica Sinica, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    EPSTEIN A and ELEFTHERIADES G V. Huygens’ metasurfaces via the equivalence principle: Design and applications[J]. Journal of the Optical Society of America B, 2016, 33(2): A31–A42. doi: 10.1364/JOSAB.33.000A31
    ZHENG Yuejun, ZHOU Yulong, GAO Jun, et al. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression[J]. Scientific Reports, 2017, 7: 16137. doi: 10.1038/s41598-017-16105-x
    ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954–2963. doi: 10.1109/TAP.2016.2562665
    CHAURASIYA D, GHOSH S, BHATTACHARYYA S, et al. Compact multi-band polarisation-insensitive metamaterial absorber[J]. IET Microwaves, Antennas and Propagation, 2016, 10(1): 94–101. doi: 10.1049/iet-map.2015.0220
    LIU Shuo and CUI Tiejun. Flexible controls of scattering clouds using coding metasurfaces[J]. Scientific Reports, 2016, 6: 37545. doi: 10.1038/srep37545
    CHEN Wengang, BALANIS C A, and BIRTCHER C R. Checkerboard EBG surfaces for wideband radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6): 2636–2645. doi: 10.1109/TAP.2015.2414440
    PAQUAY M, IRIARTE J C, EDERRA I, et al. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3630–3638. doi: 10.1109/TAP.2007.910306
    CHEN Wengang, BALANIS C A, and BIRTCHER C R. Dual wide-band checkerboard surfaces for radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 4133–4138. doi: 10.1109/TAP.2016.2583505
    MIGHANI M and DADASHZADEH G. Broadband RCS reduction using a novel double layer chessboard AMC surface[J]. Electronic Letters, 2016, 52(14): 1253–1255. doi: 10.1049/el.2016.1214
    LIU Ying, LI Kun, JIA Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326–331. doi: 10.1109/TAP.2015.2497352
    ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband difusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm[J]. Scientific Reports, 2016, 6: 23896. doi: 10.1038/srep23896
    ESMAELI S H and SEDIGHY S H. Wideband radar cross-section reduction by AMC[J]. Electronic Letters, 2016, 52(1): 70–71. doi: 10.1049/el.2015.3515
    CUI Tiejn, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Applications, 2014, 3: e218. doi: 10.1038/lsa.2014.99
    LIU Shuo and CUI Tiejun. Flexible controls of terahertz waves using coding and programmable metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 4700312. doi: 10.1109/JSTQE.2016.2599273
    LIU Shuo, CUI Tiejun, ZHANG Lei, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3: 1600156. doi: 10.1002/advs.201600156
    GAO Lihua, CHENG Qiang, YANG Jing, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science and Applications, 2015, 4: e324. doi: 10.1038/lsa.2015.97
    张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017, 10(1): 1–12. doi: 10.3788/CO.20171001

    ZHANG Lei, LIU Shuo, and CUI Tiejun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1–12. doi: 10.3788/CO.20171001
    ZANG Lei, WAN Xiang, LIU Shuo, et al. Realization of low scattering for a high-gain fabry-perot antenna using coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(7): 3374–3383. doi: 10.1109/TAP.2017.2700874
    LI Kun, LIU Ying, JIA Yongtao, et al. A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4288–4292. doi: 10.1109/TAP.2017.2710231
    SIMONE G, FILIPPO C, and AGOSTINO M. Wideband radar cross section reduction of slot antennas arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 163–173. doi: 10.1109/TAP.2013.2287888
    LIU Ying, HAO Yuwen, LI Kun, et al. Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 80–83. doi: 10.1109/LAWP.2015.2430363
    BADAWE M E, ALMONEEF T S, and RAMAHI O M. A true metasurface antenna[J]. Scientific Reports, 2015, 6: 19268. doi: 10.1038/srep19268
  • 加载中
图(16)
计量
  • 文章访问数:  2115
  • HTML全文浏览量:  789
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-10-24
  • 网络出版日期:  2018-10-31
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回