高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字视频广播通用加扰算法的不可能差分分析

沈璇 孙兵 刘国强 李超

沈璇, 孙兵, 刘国强, 李超. 数字视频广播通用加扰算法的不可能差分分析[J]. 电子与信息学报, 2019, 41(1): 46-52. doi: 10.11999/JEIT180245
引用本文: 沈璇, 孙兵, 刘国强, 李超. 数字视频广播通用加扰算法的不可能差分分析[J]. 电子与信息学报, 2019, 41(1): 46-52. doi: 10.11999/JEIT180245
Xuan SHEN, Bing SUN, Guoqiang LIU, Chao LI. Impossible Differential Cryptanalysis of the Digital Video Broadcasting-common Scrambling Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(1): 46-52. doi: 10.11999/JEIT180245
Citation: Xuan SHEN, Bing SUN, Guoqiang LIU, Chao LI. Impossible Differential Cryptanalysis of the Digital Video Broadcasting-common Scrambling Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(1): 46-52. doi: 10.11999/JEIT180245

数字视频广播通用加扰算法的不可能差分分析

doi: 10.11999/JEIT180245
基金项目: 国家重点研发计划(2017YFB0802000),国家自然科学基金(61672530, 61702537, 61772545),湖南省教育厅优秀青年项目(16B086),网络侦查技术湖南省重点实验室开放基金(2016WLZC018)
详细信息
    作者简介:

    沈璇:男,1990年生,博士生,研究方向为分组密码的安全性分析

    孙兵:男,1981年生,讲师,研究方向为对称密码的设计与分析

    刘国强:男,1986年生,讲师,研究方向为对称密码的设计与分析

    李超:男,1966年生,博士生导师,教授,研究方向为编码密码理论及其应用

    通讯作者:

    李超 academic_lc@163.com

  • 中图分类号: TN918.1

Impossible Differential Cryptanalysis of the Digital Video Broadcasting-common Scrambling Algorithm

Funds: The National Key R&D Program of China (2017YFB0802000), The National Natural Science Foundation of China (61672530, 61702537, 61772545), The Project of Hunan Province Department of Education (16B086), The Open Research Fund of Hunan Provincial Key Laboratory of Network Investigational Technology (2016WLZC018)
  • 摘要:

    数字视频广播通用加扰算法(DVB-CSA)是一种混合对称加密算法,由分组密码加密和流密码加密两部分组成。该算法通常用于保护视讯压缩标准(MPEG-2)中的信号流。主要研究DVB-CSA分组加密算法(DVB-CSA-Block Cipher, CSA-BC)的不可能差分性质。通过利用S盒的具体信息,该文构造了CSA-BC的22轮不可能差分区分器,该区分器的长度比已有最好结果长2轮。进一步,利用构造的22轮不可能差分区分器,攻击了缩减的25轮CSA-BC,该攻击可以恢复24 bit种子密钥。攻击的数据复杂度、时间复杂度和存储复杂度分别为253.3个选择明文、232.5次加密和224个存储单元。对于CSA-BC的不可能差分分析,目前已知最好结果能够攻击21轮的CSA-BC并恢复16 bit的种子密钥量。就攻击的长度和恢复的密钥量而言,该文的攻击结果大大改进了已有最好结果。

  • 图  1  CSA的整体结构

    图  2  CSA-BC加密的轮函数

    图  3  CSA-BC的25轮不可能差分攻击

    表  1  算法1:CSA-BC的加密流程

    输入:明文${{M}} = ({M_0},{M_1},{M_2},{M_3},{M_4},{M_5},{M_6},{M_7})$
    输出:密文${{C}} = ({C_0},{C_1},{C_2},{C_3},{C_4},{C_5},{C_6},{C_7})$
    (1) ${{{S}}^0} = {{M}}$;
    (2) for r=0 to 55
    (3)  ${{{S}}^{r + 1}} = f({{{S}}^r},(k_{8r}^E,k_{8r + 1}^E, \cdots ,k_{8r + 7}^E))$;
    (4) end for
    (5) ${{C}} = {{{S}}^{56}}$.
    下载: 导出CSV

    表  2  加密方向的差分传播规律

    轮数差分传播约束条件
    0$(0|0|0|0|0|0|u|0)$
    1$(0|0|0|0|0|u|0|0)$
    2$(0|0|0|0|u|0|0|0)$
    3$(0|0|0|u|0|0|0|0)$
    4$(0|0|u|0|0|0|0|0)$
    5$(0|u|0|0|0|0|0|0)$
    6$(u|0|0|0|0|0|0|0)$
    7$(0|u|u|u|0|0|0|u)$
    8$(u|u|u|0|0|{{P}}{u_1}|u|{u_1})$${u_1} \in \Delta S(u)$
    9$(u|0|u|u|{{P}}{u_1}|u \oplus {{P}}{u_2}|{u_1}|u \oplus {u_2})$${u_2} \in \Delta S({u_1})$
    10$(0|0|0|u \oplus {{P}}{u_1}|u \oplus {{P}}{u_2}|{u_1} \oplus {{P}}{u_3}|u \oplus {u_2}|u \oplus {u_3})$${u_3} \in \Delta S(u \oplus {u_2})$
    11$(0|0|u \oplus {{P}}{u_1}|u \oplus {{P}}{u_2}|{u_1} \oplus {{P}}{u_3}|u \oplus {u_2} \oplus {{P}}{u_4}|u \oplus {u_3}|{u_4})$${u_4} \in \Delta S(u \oplus {u_3})$
    12$(0|u \oplus {{P}}{u_1}|u \oplus {{P}}{u_2}|{u_1} \oplus {{P}}{u_3}|u \oplus {u_2} \oplus {{P}}{u_4}|u \oplus {u_3} \oplus {{P}}{u_5}|{u_4}|{u_5})$${u_5} \in \Delta S({u_4})$
    13$(u \oplus {{P}}{u_1}|u \oplus {{P}}{u_2}|{u_1} \oplus {{P}}{u_3}|u \oplus {u_2} \oplus {{P}}{u_4}|u \oplus {u_3} \oplus {{P}}{u_5}|{u_4} \oplus {{P}}{u_6}|{u_5}|{u_6})$${u_6} \in \Delta S({u_5})$
    14$\begin{aligned} (u \oplus {{P}}{u_2}|{u_1} \oplus {{P}}{u_3} \oplus u \oplus {{P}}{u_1}|{u_2} \oplus {{P}}{u_4} \oplus {{P}}{u_1}|\\ {u_3} \oplus {{P}}{u_5} \oplus {{P}}{u_1}|{u_4} \oplus {{P}}{u_6}|{u_5} \oplus {{P}}{u_7}|{u_6}|u \oplus {{P}}{u_1} \oplus {u_7}) \end{aligned} $${u_7} \in \Delta S({u_6})$
    下载: 导出CSV

    表  3  解密方向的差分传播规律

    轮数差分传播约束条件
    22$(0|v|v|v|0|0|0|v)$
    21$(v|0|0|0|0|0|0|0)$
    20$(0|v|0|0|0|0|0|0)$
    19$(0|0|v|0|0|0|0|0)$
    18$(0|0|0|v|0|0|0|0)$
    17$(0|0|0|0|v|0|0|0)$
    16$(0|0|0|0|0|v|0|0)$
    15$(0|0|0|0|0|0|v|0)$
    14$({v_1}|0|{v_1}|{v_1}|{v_1}|0|{{P}}{v_1}|v)$${v_1} \in \Delta S(v)$
    下载: 导出CSV

    表  4  本文结果与已有最好结果比较

    区分器
    长度
    攻击
    长度
    恢复密钥量数据复杂度时间复杂度存储复杂度来源
    20轮21轮16 bit${2^{44.5}}$${2^{22.7}}$${2^{10.5}}$文献[6]
    22轮25轮24 bit${2^{53.3}}$${2^{32.5}}$${2^{24}}$本文
    下载: 导出CSV
  • WEINMANN R P and WIRT K. Analysis of the DVB common scrambling algorithm[C]. International Federation for Information Processing, Boston, USA, 2005: 195–207.
    WIRT K. Fault attack on the DVB common scrambling algorithm[C]. Computational Science and Its Applications, Singapore, 2005: 511–517.
    SIMPSON L, HENRICKSEN M, and YAP W S. Improved cryptanalysis of the common scrambling algorithm stream cipher[C]. The 14th Australasian Conference on Information Security and Privacy, Brisbane, Australia, 2009: 108–121.
    TEWS E, WALDE J, and WEINER M. Breaking DVB-CSA[C]. West European Workshop on Research in Cryptography, Weimar, Germany, 2011: 41–45.
    ZHANG Kai and GUAN Jie. Distinguishing attack on common scrambling algorithm[J]. The International Arab Journal of Information Technology, 2015, 12(4): 410–414.
    ZHANG Kai, GUAN Jie, and HU Bin. Impossible differential cryptanalysis on DVB-CSA[J]. KSII Transactions on Internet and Information Systems, 2016, 10(3): 1944–1956. doi: 10.3837/tiis.2016.04.027
    SUN Siwei, HU Lei, WANG Peng, et al. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[C]. International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, China, 2014: 158–178.
    李俊志, 关杰. 一种基于完全性的不可能差分区分器构造方法[J]. 电子与信息学报, 2018, 40(2): 430–437. doi: 10.11999/JEIT170422

    LI Junzhi and GUAN Jie. A method of constructing impossible differential distinguishers based on completeness[J]. Journal of Electronics &Information Technology, 2018, 40(2): 430–437. doi: 10.11999/JEIT170422
    徐洪, 苏鹏晖, 戚文峰. 减轮SPECK算法的不可能差分分析[J]. 电子与信息学报, 2017, 39(10): 2479–2486. doi: 10.11999/JEIT170049

    XU Hong, SU Penghui, and QI Wenfeng. Impossible differential cryptanalysis of reduced-round SPECK[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2479–2486. doi: 10.11999/JEIT170049
    付立仕, 崔霆, 金晨辉. 嵌套SP网络的New-Structure系列结构的零相关线性逼近与不可能差分性质研究[J]. 电子学报, 2017, 45(6): 1367–1374. doi: 10.3969/j.issn.0372-2112.2017.06.013

    FU Lishi, CUI Ting, and JIN Chenhui. Zero correlation linear approximations and impossible differentials of New-Structure series with SP networks[J]. Acta Electronica Sinica, 2017, 45(6): 1367–1374. doi: 10.3969/j.issn.0372-2112.2017.06.013
    SUN Bing, LIU Meicheng, GUO Jian, et al. Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis[C]. Advances in Cryptology – EUROCRYPT 2016, Vienna, Austrian, 2016: 196–213.
    SHEN Xuan, LI Ruilin, SUN Bing, et al. Dual relationship between impossible differentials and zero correlation linear hulls of SIMON-like ciphers[C]. Information Security Practice and Experience, Melbourne, Australia, 2017: 237–255.
    BOURA C, LALLEMAND V, PLASENCIA M N, et al. Making the impossible possible[J]. Journal of Cryptology, 2018, 31(1): 101–133. doi: 10.1007/s00145-016-9251-7
    KNUDSEN L. DEAL-A 128-bit block cipher[R]. Department of Informatics, University of Bergen, Norway, 1998.
    BIHAM E, BIRYUKOV A, and SHAMIR A. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials[C]. Advances in Cryptology – EUROCRYPT 1999, Prague, Czech, 1999: 12–23.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  2361
  • HTML全文浏览量:  1059
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-16
  • 修回日期:  2018-07-25
  • 网络出版日期:  2018-08-06
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回