高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络与全局优化的协同显著性检测

吴泽民 王军 胡磊 田畅 曾明勇 杜麟

吴泽民, 王军, 胡磊, 田畅, 曾明勇, 杜麟. 基于卷积神经网络与全局优化的协同显著性检测[J]. 电子与信息学报, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241
引用本文: 吴泽民, 王军, 胡磊, 田畅, 曾明勇, 杜麟. 基于卷积神经网络与全局优化的协同显著性检测[J]. 电子与信息学报, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241
Zemin WU, Jun WANG, Lei HU, Chang TIAN, Mingyong ZENG, Lin DU. Co-saliency Detection Based on Convolutional Neural Network and Global Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241
Citation: Zemin WU, Jun WANG, Lei HU, Chang TIAN, Mingyong ZENG, Lin DU. Co-saliency Detection Based on Convolutional Neural Network and Global Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241

基于卷积神经网络与全局优化的协同显著性检测

doi: 10.11999/JEIT180241
详细信息
    作者简介:

    吴泽民:男,1973年生,副教授,硕士生导师,研究方向为图像分析、数据融合

    王军:男,1995年生,硕士生,研究方向为深度学习、图像与视频的显著度研究

    胡磊:男,1987年生,博士,研究方向为目标跟踪与识别、数据融合

    田畅:男,1963年生,教授,博士生导师,研究方向为数据链技术、图像视频处理

    曾明勇:男,1988年生,博士生,研究方向为目标检测与识别

    杜麟:男,1990年生,博士生,研究方向为视频编码与视频传输保障

    通讯作者:

    王军  wangjun_ice@126.com

  • 中图分类号: TP391.41

Co-saliency Detection Based on Convolutional Neural Network and Global Optimization

  • 摘要: 针对目前协同显著性检测问题中存在的协同性较差、误匹配和复杂场景下检测效果不佳等问题,该文提出一种基于卷积神经网络与全局优化的协同显著性检测算法。首先基于VGG16Net构建了全卷积结构的显著性检测网络,该网络能够模拟人类视觉注意机制,从高级语义层次提取一幅图像中的显著性区域;然后在传统单幅图像显著性优化模型的基础上构造了全局协同显著性优化模型。该模型通过超像素匹配机制,实现当前超像素块显著值在图像内与图像间的传播与共享,使得优化后的显著图相对于初始显著图具有更好的协同性与一致性。最后,该文创新性地引入图像间显著性传播约束因子来克服超像素误匹配带来的影响。在公开测试数据集上的实验结果表明,所提算法在检测精度和检测效率上优于目前的主流算法,并具有较强的鲁棒性。
  • 图  1  显著性检测网络结构示意图

    图  2  本文算法每个步骤所生成的显著图对比

    图  3  协同显著性优化示意图

    图  5  iCoSeg数据集上部分实验结果对比示例

    图  4  ImgPair数据集上部分实验结果对比示例(GT表示真值图)

    图  6  本文算法在iCoSeg数据集上的量化分析(F-measure曲线图)

    图  8  本文算法与其他算法在两大数据集上的F-measure曲线对比

    图  7  本文算法与其他算法在两大数据集上的P-R曲线对比

    表  1  不同算法在两大数据库上的测试结果对比

    算法 ImgPair iCoSeg
    AUC AF MAE AUC AF MAE
    SA 0.967 0.826 0.160 0.965 0.720 0.160
    HS 0.954 0.821 0.147 0.954 0.640 0.180
    CB-C 0.931 0.782 0.178 0.913 0.647 0.198
    CB-S 0.927 0.749 0.181 0.935 0.688 0.173
    ACM 0.880 0.719 0.197
    SM 0.879 0.724 0.166 0.621 0.580 0.234
    LDW 0.957 0.699 0.178
    IPIM 0.964 0.703 0.159
    本文CNN 0.958 0.811 0.098 0.932 0.761 0.081
    本文CNN+COOPT 0.981 0.904 0.075 0.962 0.848 0.056
    下载: 导出CSV

    表  2  不同协同显著性算法平均运算时间比较

    算法 CB-C SA SM 本文CNN 本文CNN+COOPT
    时间(s) 5.40 2.10 6.60 0.12 2.70
    处理器 CPU CPU CPU GPU CPU+GPU
    下载: 导出CSV
  • CHANG Kaiyueh, LIU Tyngluh, and LAI Shanghong. From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado, USA, 2011: 2129–2136.
    JACOBS D E, DAN B G, and SHECHTMAN E. Co-saliency: Where people look when comparing images[C]. ACM Symposium on User Interface Software and Technology, New York, USA, 2010: 219–228.
    YE Linwei, LIU Zhi, ZHOU Xiaofeng, et al. Saliency detection via similar image retrieval[J]. IEEE Signal Processing Letters, 2016, 23(6): 838–842 doi: 10.1109/LSP.2016.2558489
    YE Linwei, LIU Zhi, LI Junhao, et al. Co-saliency detection via co-salient object discovery and recovery[J]. IEEE Signal Processing Letters, 2015, 22(11): 2073–2077 doi: 10.1109/LSP.2015.2458434
    LIU Zhi, ZOU Wenbin, and OLIVIER L M. Saliency tree: A novel saliency detection framework[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1937–1952 doi: 10.1109/TIP.2014.2307434
    REN Jingru, ZHOU Xiaofei, LIU Zhi, et al. Saliency integration driven by similar images[J]. Journal of Visual Communication and Image Representation, 2018, 50: 227–236 doi: 10.1016/j.jvcir.2017.12.002
    LI Yijun, FU Keren, LIU Zhi, et al. Efficient saliency-model-guided visual co-saliency detection[J]. IEEE Signal Processing Letters, 2015, 22(5): 588–592 doi: 10.1109/LSP.2014.2364896
    FU Huazhu, CAO Xiaochun, and TU Zhuowen. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3766–3778 doi: 10.1109/TIP.2013.2260166
    LIU Zhi, ZOU Wenbin, LI Lina, et al. Co-saliency detection based on hierarchical segmentation[J]. IEEE Signal Processing Letters, 2014, 21(1): 88–92 doi: 10.1109/LSP.2013.2292873
    ZHANG Zhaofeng, WU Zemin, JIANG Qingzhu, et al. Co-saliency detection based on superpixel matching and cellular automata[J]. KSII Transactions on Internet and Information Systems, 2017, 11(5): 2576–2589 doi: 10.3837/tiis.2017.05.015
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, 2013: 3166–3173.
    QIN Yao, LU Huchuan, XU Yiqun, et al. Saliency detection via cellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 110–119.
    ZHANG Dingwen, HAN Junwei, LI Chao, et al. Co-saliency detection via looking deep and wide[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2994–3002.
    ZHANG Dingwen, MENG Deyu, HAN Junwei, et al. Co-saliency detection via a self-paced multiple-instance learning framework[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(5): 865–878 doi: 10.1109/TPAMI.2016.2567393
    WEI Lina, ZHAO Shanshan, BOURAHLA O E F, et al. Group-wise deep co-saliency detection[C]. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 3041–3047.
    SIMONYAN K, and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[OL]. Computer Science, 2014. arXiv: 1409.1556.
    LI Xi, ZHAO Liming, WEI Lina, et al. Deepsaliency: Multi-task deep neural network model for salient object detection[J]. IEEE Transactions on Image Processing, 2016, 25(8): 3919–3930 doi: 10.1109/TIP.2016.2579306
    JIA Yangqing, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding [C]. Proceedings of the ACM International Conference on Multimedia, 2014: 675–678.
    CHENG Mingming, ZHANG Guoxin, NILOY J, et al. Global contrast based salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Spring, USA, 2011: 409–416.
    ACHANTA R, SHAJI A, SMITH K, et al. Slic superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282 doi: 10.1109/TPAMI.2012.120
    LU Song, MAHADEVAN V, and VASCONCELOS N. Learning optimal seeds for diffusion-based salient object detection[C]. IEEE Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 2790–2797.
    LI Hongliang and NGAN K N. A co-saliency model of image pairs[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3365–3375 doi: 10.1109/TIP.2011.2156803
    BATRA D, KOWDLE A, PARIKH D, et al. Interactively co-segmentating topically related images with intelligent scribble guidance[J]. International Journal of Computer Vision, 2011, 93(3): 273–292 doi: 10.1007/s11263-010-0415-x
    CAO Xiaochun, TAO Zhiqiang, ZHANG Bao, et al. Self-adaptively weighted co-saliency detection via rank constraint[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4175–4186 doi: 10.1109/TIP.2014.2332399
    ZHANG Dingwen, HAN Junwei, HAN Jungong, et al. Co-saliency detection based on intra-saliency prior transfer and deep inter-saliency mining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1163–1176 doi: 10.1109/TNNLS.2015.2495161
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2509
  • HTML全文浏览量:  800
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-16
  • 修回日期:  2018-08-22
  • 网络出版日期:  2018-08-31
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回