高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于软件定义网络的服务器集群负载均衡技术研究

于天放 芮兰兰 邱雪松

于天放, 芮兰兰, 邱雪松. 基于软件定义网络的服务器集群负载均衡技术研究[J]. 电子与信息学报, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207
引用本文: 于天放, 芮兰兰, 邱雪松. 基于软件定义网络的服务器集群负载均衡技术研究[J]. 电子与信息学报, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207
Tianfang YU, Lanlan RUI, Xuesong QIU. Research on SDN-based Load Balancing Technology of Server Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207
Citation: Tianfang YU, Lanlan RUI, Xuesong QIU. Research on SDN-based Load Balancing Technology of Server Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207

基于软件定义网络的服务器集群负载均衡技术研究

doi: 10.11999/JEIT180207
基金项目: 国家自然科学基金(61702048, 61302078)
详细信息
    作者简介:

    于天放:男,1980年生,博士生,研究方向为软件定义网络

    芮兰兰:女,1979年生,博士,副教授,研究方向为网络和业务质量管理、泛在网络、大数据等

    邱雪松:男,1973年生,博士,教授,研究方向为网络管理与通信软件

    通讯作者:

    于天放  m2015010@foxmail.com

  • 中图分类号: TP393

Research on SDN-based Load Balancing Technology of Server Cluster

Funds: The National Natural Science Foundation of China (61702048, 61302078)
  • 摘要: 在当前的网络体系结构下,采用硬件系统实现服务器集群负载均衡存在着获取负载节点状态困难、流量导向方式复杂等制约因素,不利于提升服务器集群的伸缩性和服务性能。针对此问题,该文提出一种基于软件定义网络(SDN)的负载均衡机制(SDNLB)。该机制借助SDN具有的集中式控制和流量灵活调度优势,利用SNMP协议和OpenFlow协议对服务器的运行状态和全局网络负载信息进行实时监测,并通过权值计算的方式选择出权重最高的服务器作为流处理的目标服务器,在此基础上,采用最优转发路径算法进行流量调度,从而达到提高服务器集群的利用率与处理性能的目的。搭建了实验平台对SDNLB的性能进行仿真测试,实验结果表明:在相同的网络负载条件下,SDNLB与其他负载均衡算法相比,能够有效地降低服务器集群的负载,并能够显著提高网络吞吐量和带宽利用率,缩短流的完成时间和平均时延。
  • 图  1  服务器性能监测的主要过程

    图  2  不同算法的网络性能指标对比

    图  3  不同算法的流完成时间、平均时延对比

    表  1  服务器主要性能指标

    指标类型 指标值 状态
    CPU利用率 非空闲任务占用比小于70% 良好
    70%~85% 过高
    90%以上 很差
    内存访问 没有页交换 良好
    每个CPU每秒10个页交换 过高
    更多的页交换 很差
    磁盘I/O 活动时间百分比小于30% 良好
    30%~45% 过高
    50%以上 很差
    下载: 导出CSV

    表  2  流转发过程

     算法1 SDNLB最优转发路径算法
     输入:Topology_View /*当前网络拓扑视图*/
        Link_Load /*网络链路负载信息*/
        Target-Server /*目标服务器*/
        Flow /*新到达的流*/
     输出:R /*最优转发路径*/
     (1) implement logical loopless processing
     (2) destination=target-server
     (3) create a graph that meets bandwidth demand of flow
     (4) A=[ ]
     (5) A[0]= Dijkstra(graph, source, destination)
     (6) B=[ ]
     (7) for i: 1 to K do
     (8) for j: 0 to size(A[i –1])–1 do
     (9)  spur=A[i –1].node( j)
     (10)  root=A[i –1].nodes(0, j)
     (11)  for path in A do
     (12)   if root==path.nodes(0, j) do
     (13)    remove path.nodes(j, j+1)
     (14)   end if
     (15)  end for
     (16)  spurpath=Dijkstra(graph, spur, destination)
     (17)  entirepath=root+spurpath
     (18)  if entirepath not in B do
     (19)    B.add(entirepath)
     (20)  end if
     (21) recover those removed edges
     (22) end for
     (23) if B.length==0 do
     (24)  break
     (25) else do
     (26)   B.sort()
     (27)   A[i]=B[0]
     (28)   B.delete(B[0])
     (29) end if
     (30) end for
     (31) if A.length==1 do
     (32)  R=A[0]
     (33) else do
     (34) determine R by choosing a path from list A.Bandwidth utilization of the path should be minimum
     (35) end if
     (36) return R
    下载: 导出CSV

    表  4  服务器平均负载

    服务器编号 2 4 6 8 10 12 14 16
    SDNLB 0.71 0.71 0.70 0.71 0.68 0.69 0.73 0.72
    E-Dijkstra 0.75 0.74 0.75 0.76 0.74 0.74 0.76 0.77
    GFF 0.74 0.75 0.78 0.78 0.77 0.74 0.77 0.78
    ECMP 0.86 0.86 0.87 0.89 0.87 0.87 0.85 0.87
    下载: 导出CSV

    表  3  CPU平均利用率(%)

    服务器编号 2 4 6 8 10 12 14 16
    SDNLB 22.65 22.53 22.43 22.31 22.20 22.58 22.48 22.11
    E-Dijkstra 23.39 23.34 23.32 23.29 23.26 23.50 23.36 23.29
    GFF 23.40 23.46 23.45 23.48 23.46 23.37 23.34 23.54
    ECMP 23.79 23.70 23.66 23.60 23.59 23.75 23.68 23.56
    下载: 导出CSV
  • GHOMI E, RAHMANI A, and QADER N. Load-balancing algorithms in cloud computing: A survey[J]. Journal of Network and Computer Applications, 2017, 88(12): 50–71 doi: 10.1016/j.jnca.2017.04.007
    SHARMA G and BUSCH C. A load balanced directory for distributed shared memory objects[J]. Journal of Parallel and Distributed Computing, 2015, 78(4): 6–24 doi: 10.1016/j.jpdc.2015.02.002
    ILCHOL P, QIAO Baiyou, SHEN Muchuan, et al. An efficient load balancing approach for N-hierarchical web server cluster[J]. Wuhan University Journal of Natural Sciences, 2015, 20(6): 537–542 doi: 10.1007/s11859-015-1130-9
    YANG Juipin. Elastic load balancing using self-adaptive replication management[J]. IEEE Access, 2017, 5(99): 7495–7504 doi: 10.1109/ACCESS.2016.2631490
    SHEIKHI S and BABAMIR S. A predictive framework for load balancing clustered web servers[J]. The Journal of Supercomputing, 2016, 72(2): 588–611 doi: 10.1007/s11227-015-1584-8
    MAO Qilin and SHEN Weikang. A load balancing method based on SDN[C]. The 7th International Conference on Measuring Technology and Mechatronics Automation, Nanchang, China, 2015: 18–21.
    TRESTIAN R, KATRINIS K, and MUNTEAN G. OFLoad: An OpenFlow-based dynamic load balancing strategy for datacenter networks[J]. IEEE Transactions on Network and Service Management, 2017, 14(4): 792–803 doi: 10.1109/TNSM.2017.2758402
    李龙, 付斌章, 陈明宇, 等. Nimble: 一种适用于OpenFlow网络的快速流调度策略[J]. 计算机学报, 2015, 38(5): 1056–1068 doi: 10.3724/SP.J.1016.2015.01056

    LI Long, FU Binzhang, CHEN Mingyu, et al. Nimble: A fast flow scheduling strategy for OpenFlow networks[J]. Chinese Journal of Computers, 2015, 38(5): 1056–1068 doi: 10.3724/SP.J.1016.2015.01056
    AL-FARES M, RADHAKRISHNAN S, RAGHAVAN B, et al. Hedera: Dynamic flow scheduling for data center networks[C]. NSDI’10 Proceedings of the 7th USENIX conference on networked systems design and implementation, San Jose, USA, 2010: 281–296.
    蔡岳平, 王昌平. 软件定义数据中心网络混合路由机制[J]. 通信学报, 2016, 37(4): 44–52 doi: 10.11959/j.issn.1000-436x.2016071

    CAI Yueping and WANG Changping. Software defined data center network with hybrid routing[J]. Journal on Communications, 2016, 37(4): 44–52 doi: 10.11959/j.issn.1000-436x.2016071
    覃匡宇, 黄传河, 刘柯威, 等. 基于多路广播树的SDN多路径路由算法[J]. 计算机科学, 2018, 45(1): 211–215 doi: 10.11896/j.issn.1002-137X.2018.01.037

    TAN Kuangyu, HUANG Chuanhe, LIU Kewei, et al. Multipath routing algorithm in software defined networking based on multipath broadcast tree[J]. Computer Science, 2018, 45(1): 211–215 doi: 10.11896/j.issn.1002-137X.2018.01.037
    LIAO Lingxia and LEUNG VC. LLDP based link latency monitoring in software defined networks[C]. The 12th International Conference on Network and Service Management, Montreal, Canada, 2016: 330–335.
    RUBIN I and ZHANG Runhe. Max-min utility fair flow management for networks with route diversity[J]. International Journal of Network Management, 2010, 20(6): 361–381 doi: 10.1002/nem.740
    YEN J Y. Finding the K shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712–716 doi: 10.1287/mnsc.17.11.712
    JIANG J R, HUANG H W, LIAO J H, et al. Extending Dijkstra’s shortest path algorithm for software defined networking[C]. The 16th Asia-Pacific Network Operations and Management Symposium, Hsinchu, China, 2014: 1–4.
    ZHANG Zhe, BOCKELMAN B, CARDER D, et al. Lark: An effective approach for software-defined networking in high throughput computing clusters[J]. Future Generation Computer Systems, 2017, 72(7): 105–117 doi: 10.1016/j.future.2016.03.010
    CHEN Yingying, JAIN S, ADHIKARI V, et al. A first look at inter-data center traffic characteristics via Yahoo! datasets[C]. IEEE INFOCOM, Shanghai, China, 2011: 1620–1628.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1793
  • HTML全文浏览量:  663
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-08-13
  • 网络出版日期:  2018-08-22
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回