高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯化-广义匹配的脉冲型噪声处理方法研究

罗忠涛 卢鹏 张杨勇 张刚

罗忠涛, 卢鹏, 张杨勇, 张刚. 基于高斯化-广义匹配的脉冲型噪声处理方法研究[J]. 电子与信息学报, 2018, 40(12): 2928-2935. doi: 10.11999/JEIT180191
引用本文: 罗忠涛, 卢鹏, 张杨勇, 张刚. 基于高斯化-广义匹配的脉冲型噪声处理方法研究[J]. 电子与信息学报, 2018, 40(12): 2928-2935. doi: 10.11999/JEIT180191
Zhongtao LUO, Peng LU, Yangyong ZHANG, Gang ZHANG. A Novel Method for Nonlinear Processing in Impulsive Noise Based on Gaussianization and Generalized Matching[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2928-2935. doi: 10.11999/JEIT180191
Citation: Zhongtao LUO, Peng LU, Yangyong ZHANG, Gang ZHANG. A Novel Method for Nonlinear Processing in Impulsive Noise Based on Gaussianization and Generalized Matching[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2928-2935. doi: 10.11999/JEIT180191

基于高斯化-广义匹配的脉冲型噪声处理方法研究

doi: 10.11999/JEIT180191
基金项目: 国家自然科学基金(61701067, 61771085, 61671095),重庆市教育委员会科研基金(KJ1600427, KJ1600429)
详细信息
    作者简介:

    罗忠涛:男,1984年生,讲师,硕士生导师,研究方向为统计信号处理与数字图像处理

    卢鹏:男,1994年生,硕士生,研究方向为低频噪声分析与低频通信信号处理

    张杨勇:男,1983年生,高级工程师,研究方向为低频通信技术与信号处理

    张刚:男,1976年生,副教授,硕士生导师,研究方向为微弱信号检测与混沌信号处理

    通讯作者:

    罗忠涛  luozt@cqupt.edu.cn

  • 中图分类号: TN911

A Novel Method for Nonlinear Processing in Impulsive Noise Based on Gaussianization and Generalized Matching

Funds: The National Natural Science Foundation of China (61701067, 61771085, 61671095), The Project supported by Scientific Research Foundation of the Chongqing Education Committee (KJ1600427, KJ1600429)
  • 摘要: 针对脉冲型噪声,该文提出一种新的非线性处理方法,即高斯化-广义匹配(GGM)处理。GGM方法基于高斯化处理与广义匹配滤波,可结合非参数的概率密度估计进行设计,解决噪声模型未知时的非线性处理问题。该文以脉冲型噪声 ${\rm S\alpha S}$ 分布模型为例,分析GGM方法的特点和性能;再结合Class A噪声模型,讨论GGM设计作为非参数方法相比模型假设失配的优势;引入效能函数,验证GGM方法在恒虚警技术中的运用。结果表明,在已知噪声分布情况下,GGM方法具有次优检测性能;当噪声模型未知时,非参数GGM设计能保持稳健性能,优于模型失配下的处理。并且,GGM设计对样本数目要求不高,为噪声特性不明或时变的场景提供了一种新的信号处理方法。
  • 图  1  基于PDF或样本的GGM函数

    图  2  针对 ${\rm S\alpha S}$ 模型的ZMNL函数, $\alpha $ =1.5, $\gamma $ =1

    图  3  ${\rm S\alpha S}$ 噪声中不同ZMNL函数的效能, $\gamma $ =1

    图  4  基于不同样本数目的GGM设计的效能, $\gamma $ =1

    图  5  Class A噪声中GGM方法的效能, ${Γ} $ =10–3

    图  6  Class A噪声中的恒虚警性能,a=0.1, ${Γ} $ =10–3

    图  7  实测大气噪声下的恒虚警性能

  • KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. Englewood Cliffs, US, Prentice-Hall, Inc., 1993: 94–115.
    LACHOS V H, ANGOLINI T, and ABANTO-VALLE C A. On estimation and local influence analysis for measurement errors models under heavy-tailed distributions[J]. Statistical Papers, 2011, 52(3): 567–590 doi: 10.1007/s00362-009-0270-4
    DAVIS R R and CLAVIER O. Impulsive noise: A brief review[J]. Elsevier Hearing Research, 2017, 349: 34–36 doi: 10.1016/j.heares.2016.10.020
    LI Xutao, JIN Lianwen, and WANG Shouyong. A simplified non-Gaussian mixture model for signal LO detection in -stable interference[C]. IEEE Congress on Image and Signal Processing, Beijing, China, 2008: 403–407.
    SHAO M and NIKIAS C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986–1010 doi: 10.1109/5.231338
    ZHANG Guoyong, WANG Jun, YANG Guosheng, et al. Nonlinear processing for correlation detection in symmetric alpha-stable noise[J]. IEEE Signal Processing Letters, 2018, 25(1): 120–124 doi: 10.1109/LSP.2017.2776317
    MIDDLETON D. Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 21(3): 190–208 doi: 10.1109/TEMC.1979.303731
    TSIHRINTZIS G A and NIKIAS C L. Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process[J]. IEEE Transactions on Communications, 1995, 43(2/3/4): 904–914 doi: 10.1109/26.380123
    VADALI S R K, RAY P, MULA S, et al. Linear detection of a weak signal in additive Cauchy noise[J]. IEEE Transactions on Communications, 2017, 65(3): 1061–1076 doi: 10.1109/TCOMM.2016.2647599
    OH H and NAM H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 364–376 doi: 10.1109/TVT.2016.2547889
    LI Xutao, SUN Jun, WANG Shouyong, et al. Near-optimal detection with constant false alarm ratio in varying impulsive interference[J]. IET Signal Processing, 2013, 7(9): 824–832 doi: 10.1049/iet-spr.2013.0024
    LI Xutao, CHEN Peng, FAN Lisheng, et al. Normalization-based receiver using BCGM approximation for -stable noise channels[J]. Electronics Letters, 2013, 49(15): 965–967 doi: 10.1049/el.2013.1289
    SWAMI A and SADLER B M. On some detection and estimation problems in heavy-tailed noise[J]. Elsevier Signal Processing, 2002, 82(12): 1829–1846 doi: 10.1016/S0165-1684(02)00314-6
    张杨勇, 刘勇. 低频段大气噪声及处理技术[J]. 舰船科学技术, 2008, 30(S1): 85–88 doi: 10.3404/j.issn.1672-7649.2008.S021

    ZHANG Yangyong and LIU Yong. Atmospheric-noise at low frequency and its processing technique[J]. Ship Science&Technology, 2008, 30(S1): 85–88 doi: 10.3404/j.issn.1672-7649.2008.S021
    WANG Pingbo, LIU Feng, CAI Zhiming, et al. G-Filter's Gaussianization function for interference background[C]. International Conference on Signal Acquisition and Processing, Nanjing, China, 2010: 76–79.
    SAMIUDDIN M and EL-SAYYAD G M. On nonparametric kernel density estimates[J]. Biometrika, 1990, 77(4): 865–874 doi: 10.1093/77.4.865
    SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. London, UK, Chapman & Hall, 1986: 45–48.
    HASHEMIFARD Z and AMINDAVAR H. PDF approximations to estimation and detection in time-correlated alpha-stable channels[J]. Elsevier Signal Processing, 2017, 133: 97–106 doi: 10.1016/j.sigpro.2016.10.021
    BIBALAN M H, AMINDAVAR H, and AMIRMAZLAGHANI M. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach[J]. Elsevier Signal Processing, 2017, 130: 323–336 doi: 10.1016/j.sigpro.2016.07.020
    KOLODZIEJSKI K R and BETZ J W. Detection of weak random signals in IID non-Gaussian noise[J]. IEEE Transactions on Communications, 2000, 48(2): 222–230 doi: 10.1109/26.823555
    ARIF M, NASEEM I, MOINUDDIN M, et al. Design of optimum error nonlinearity for channel estimation in the presence of Class-A impulsive noise[C]. IEEE International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 2017: 1–6.
    WEINBERG G V. On the construction of CFAR decision rules via transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1140–1146 doi: 10.1109/TGRS.2016.2620138
  • 加载中
图(7)
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  840
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-11
  • 修回日期:  2018-07-26
  • 网络出版日期:  2018-08-03
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回