高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z4上周期为2p2的四元广义分圆序列的线性复杂度

杜小妮 赵丽萍 王莲花

杜小妮, 赵丽萍, 王莲花. Z4上周期为2p2的四元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2018, 40(12): 2992-2997. doi: 10.11999/JEIT180189
引用本文: 杜小妮, 赵丽萍, 王莲花. Z4上周期为2p2的四元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2018, 40(12): 2992-2997. doi: 10.11999/JEIT180189
Xiaoni DU, Liping ZHAO, Lianhua WANG. Linear Complexity of Quaternary Sequences over Z4 Derived from Generalized Cyclotomic Classes Modulo 2p2[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2992-2997. doi: 10.11999/JEIT180189
Citation: Xiaoni DU, Liping ZHAO, Lianhua WANG. Linear Complexity of Quaternary Sequences over Z4 Derived from Generalized Cyclotomic Classes Modulo 2p2[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2992-2997. doi: 10.11999/JEIT180189

Z4上周期为2p2的四元广义分圆序列的线性复杂度

doi: 10.11999/JEIT180189
基金项目: 国家自然科学基金(61462077, 61772022),安徽省自然科学基金(1608085MF143),上海市自然科学基金(16ZR1411200)
详细信息
    作者简介:

    杜小妮:女,1972年生,教授,博士生导师,研究方向为密码学与信息安全

    赵丽萍:女,1993年生,硕士生,研究方向为密码学与信息安全

    王莲花:女,1980年生,硕士生,研究方向为密码学与信息安全

    通讯作者:

    赵丽萍  marching666@126.com

  • 中图分类号: TN918.4

Linear Complexity of Quaternary Sequences over Z4 Derived from Generalized Cyclotomic Classes Modulo 2p2

Funds: The National Natural Science Foundation of China (61462077, 61772022), Anhui Province Natural Science Foundation (1608085MF143), Shanghai Municipal Natural Science Foundation (16ZR1411200)
  • 摘要: 该文根据特征为4的Galois环理论,在Z4上利用广义分圆构造出一类新的周期为2p2(p为奇素数)的四元序列,并且给出了它的线性复杂度。结果表明,该序列具有良好的线性复杂度性质,能够抗击Berlekamp-Massey (B-M)算法的攻击,是密码学意义上性质良好的伪随机序列。
  • GOLOMB S W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar[M]. Cambridge: UK, Cambridge University Press, 2005: 174–175.
    杜小妮, 王国辉, 魏万银. 周期为2p2的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490–2494 doi: 10.11999/JETT150180

    DU Xiaoni, WANG Guohui, and WEI Wanyin. Linear complexity of binary generalized cyclotomic sequences of order four with period 2p2[J]. Journal of Electronics&Information Technology, 2015, 37(10): 2490–2494 doi: 10.11999/JETT150180
    李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650–654 doi: 10.3724/SP.J.1146.2013.00751

    LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequences with period 2pq[J]. Journal of Electronics&Information Technology, 2014, 36(3): 650–654 doi: 10.3724/SP.J.1146.2013.00751
    ZHANG Jingwei and ZHAO Changan. The linear complexity of a class of binary sequences with period 2p[J]. Applicable Algebra in Engineering,Communication and Computing, 2015, 26(5): 475–491 doi: 10.1007/s00200-015-0261-8
    MA Xiao, YAN Tongjiang, ZHANG Daode, et al. Linear complexity of some binary interleaved sequences of period 4N[J]. International Journal of Network Security, 2016, 18(2): 244–249 doi: 10.6633/IJNS.201603.18(2).06
    EDEMSKIY V and PALVINSKIY A. The linear complexity of binary sequences of length 2p with optimal three-level autocorrelation[J]. Information Processing Letters, 2016, 116(2): 153–156 doi: 10.1016/j.ipl.2015.09.007
    DU Xiaoni and CHEN Zhixiong. Linear complexity of quaternary sequences generated using generalized cyclotomic classes modulo 2p[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2011, 94(5): 1214–1217 doi: 10.1587/transfun.E94.A.1214
    CHEN Zhixiong. Linear complexity and trace representation of quaternary sequences over Z4 based on generalized cyclotomic classes modulo[J]. Cryptography and Communications, 2017, 9(4): 445–458 doi: 10.1007/s12095-016-0185-6
    EDEMSKIY V and IVANOV A. Linear complexity of quaternary sequences of length pq with low autocorrelation[J]. Journal of Computational and Applied Mathematics, 2014, 259B: 555–560 doi: 10.1016/j.cam.2013.08.003
    EDEMSKIY V and IVANOV A. The linear complexity of balanced quaternary sequences with optimal autocorrelation value[J]. Cryptography and Communications, 2015, 7(4): 485–496 doi: 10.1007/s12095-015-0130-0
    CHEN Zhixiong and EDEMSKIY V. Linear complexity of quaternary sequences over Z4 derived from generalized cyclotomic classes modulo[OL]. arXiv preprint arXiv: 1603.05086, 2016.
    IRELAND K and ROSEN M. A Classical Introduction to Modern Number Theory[M]. Germany: Springer Science & Business Media, 2013: 83–120.
    UDAYA P and SIDDIQI M U. Generalized GMW quadriphase sequences satisfying the Welch bound with equality[J]. Applicable Algebra in Engineering,Communication and Computing, 2000, 10(3): 203–225 doi: 10.1007/s002000050125
    WAN Zhexian. Finite Fields and Galois Rings[M]. Singapore, World Scientific Publishing Company, 2011: 23–25.
    CUSICK T W, DING Gunsheng, and RENVALL A R. Stream Ciphers and Number Theory[M]. Dutch, Elsevier, 2004: 112–113.
  • 加载中
计量
  • 文章访问数:  2202
  • HTML全文浏览量:  558
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-11
  • 修回日期:  2018-08-13
  • 网络出版日期:  2018-08-27
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回