高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于WiFi室内定位的自适应仿射传播聚类算法

胡久松 刘宏立 肖郭璇 徐琨

胡久松, 刘宏立, 肖郭璇, 徐琨. 应用于WiFi室内定位的自适应仿射传播聚类算法[J]. 电子与信息学报, 2018, 40(12): 2889-2895. doi: 10.11999/JEIT180186
引用本文: 胡久松, 刘宏立, 肖郭璇, 徐琨. 应用于WiFi室内定位的自适应仿射传播聚类算法[J]. 电子与信息学报, 2018, 40(12): 2889-2895. doi: 10.11999/JEIT180186
Jiusong HU, Hongli LIU, Guoxuan XIAO, Kun XU. Adaptive Affine Propagation Clustering Algorithm for WiFi Indoor Positioning[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2889-2895. doi: 10.11999/JEIT180186
Citation: Jiusong HU, Hongli LIU, Guoxuan XIAO, Kun XU. Adaptive Affine Propagation Clustering Algorithm for WiFi Indoor Positioning[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2889-2895. doi: 10.11999/JEIT180186

应用于WiFi室内定位的自适应仿射传播聚类算法

doi: 10.11999/JEIT180186
基金项目: 中央国有资本经营预算项目(财企[2013]470号);国家自然科学基金(61771191)
详细信息
    作者简介:

    胡久松:男,1987年生,博士生,研究方向为室内定位、机器学习

    刘宏立:男,1963年生,教授,博士生导师,主要研究方向为无线传感网络、现代通信理论和移动通信系统

    肖郭璇:女,1989年生,工程师,研究方向为智能电网

    徐琨:男,1979年生,博士生,研究方向为无线传感网络、移动通信

    通讯作者:

    刘宏立  hongliliu@hnu.edu.cn

  • 中图分类号: TP391

Adaptive Affine Propagation Clustering Algorithm for WiFi Indoor Positioning

Funds: The Central State-Owned Capital Management and Budget Project (2013-470), The National Natural Science Foundation of China (61771191)
  • 摘要: 在室内覆盖的大量的WiFi信号可以用来室内定位。尽管很多WiFi室内定位技术被提出,但其定位精度仍然未达到实际应用的需求。针对这个问题,该文提出一种自适应仿射传播聚类(AAPC)算法用以提高WiFi指纹的聚类质量,从而提高定位精度。AAPC算法通过动态调整参数生成不同的聚类结果,然后采用聚类有效性指标筛选出其中最佳的。采集大量真实环境数据进行试验,试验结果表明采用AAPC算法产生的聚类结果具有更高的定位精度。
  • 图  1  系统框图

    图  2  生成指定目标聚类数的自适应APC算法流程

    图  3  试验环境的平面图以及参考点分布

    图  4  不同聚类算法的聚类结果

    图  5  不同聚类算法的定位结果

    表  1  UCI数据集

    数据集 类型 样本数 属性个数 类数
    iris real 150 4 3
    air real 359 64 3
    sonar real 208 60 2
    glass real 214 9 6
    wine real 178 12 3
    heart real 270 13 2
    zoo artificial 101 16 7
    ionosphere real 351 34 2
    vote artificial 435 16 2
    vowel real 528 10 11
    diabetes real 768 8 2
    下载: 导出CSV

    表  2  3种算法的对比结果

    数据集 是否收敛 聚类数 真实 时间(s)
    A B C A B C A B C
    iris 2 2 2 3 44.6 15.0 1.0
    air × 2 × 2 3 275.6 × 8.4
    sonar × 3 × 3 2 96 × 2.5
    glass × 4 × 5 6 133 × 6.7
    wine 2 2 2 3 53.9 32 1.7
    heart × 2 × 3 2 146.6 × 5.3
    zoo × 6 × 4 7 48.1 × 0.9
    ionosphere × × × × 4 2 × × 0.8
    vote × 2 × 2 2 767.6 × 34.7
    vowel × 22 75 18 11 774.4 576.6 36.9
    diabetes × 2 × 2 2 1670 × 105.5
    下载: 导出CSV
  • DAVIDSON P and PICHE R. A survey of selected indoor positioning methods for smartphones[J]. IEEE Communications Surveys and Tutorials, 2017, 19(2): 1347–1370 doi: 10.1109/comst.2016.2637663
    ZHANG Weile, YIN Qinye, CHEN Hongyang, et al. Distributed angle estimation for localization in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 527–537 doi: 10.1109/TWC.2012.121412.111346
    LIU Bin, CHEN Hongyang, ZHONG Ziguo, et al. Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3532–3542 doi: 10.1109/TWC.2010.090210.100146
    CHEN Hongyang, LIU Bin, HUANG Pei, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks&Applications, 2012, 17(1): 90–99 doi: 10.1007/s11036-010-0281-3
    HOSSAIN A K M M and SOH W. A survey of calibration-free indoor positioning systems[J]. Computer Communications, 2015, 66: 1–13 doi: 10.1016/j.comcom.2015.03.001
    FENG Chen, AU W S A, VALAEE S, et al. Received-signal-strength-based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983–1993 doi: 10.1109/tmc.2011.216
    周牧, 唐云霞, 田增山, 等. 基于流形插值数据库构建的WLAN室内定位算法[J]. 电子与信息学报, 2017, 39(8): 1826–1834 doi: 10.11999/JEIT161269

    ZHOU Mu, TANG Yunxia, TIAN Zengshan, et al. WLAN indoor localization algorithm based on manifold interpolation database construction[J]. Journal of Electronics&Information Technology, 2017, 39(8): 1826–1834 doi: 10.11999/JEIT161269
    BAI Sidong and WU Tong. Analysis of K-means algorithm on fingerprint based indoor localization system[C]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Chengdu, China, 2013: 44–48.
    ZHANG Liwen, WANG Yunjia, and WANG Xingfeng. Affinity propagation clustering for fingerprinting database in indoor localization[J]. Bulletin of Surveying and Mapping, 2014(12): 36–39 doi: 10.13474/j.cnki112246.2014.0392
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. Proceedings-IEEE INFOCOM, TelAviv, Israel, 2000, 2: 775–784.
    YOUSSEF M and AGRAWALA A. The horus WLAN location determination system[C]. Proceedings of the Third International Conference on Mobile Systems, Applications, and Services (MobiSys 2005). Seattle, USA, 2005: 205–218.
    李丽娜, 马俊, 龙跃, 等. 基于LANDMARC与压缩感知的双段式室内定位算法[J]. 电子与信息学报, 2016, 38(7): 1631–1637 doi: 10.11999/JEIT151050

    LI Lina, MA Jun, LONG Yue, et al. Double stage indoor localization algorithm based on LANDMARC and compressive sensing[J]. Journal of Electronics&Information Technology, 2016, 38(7): 1631–1637 doi: 10.11999/JEIT151050
    CASO G, NARDIS L D, and BENEDETTO M G D. A mixed approach to similarity metric selection in affinity propagation-based WiFi fingerprinting indoor positioning[J]. Sensors, 2015, 15(11): 27692–27720 doi: 10.3390/s151127692
    AU A W S, FENG Chen, VALAEE S, et al. Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device[J]. IEEE Transactions on Mobile Computing, 2013, 12(10): 2050–2062 doi: 10.1109/TMC.2012.175
    FREY B J and DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972–976 doi: 10.1126/science.1136800
    FREY L P and STATISTICAL I G. Affinity propagation (University of Toronto) [OL]. avail-able: https://www.psi.toronto.edu/affinitypropagation/software/, 2018.
    YU Jian and JIA Caiyan. Convergence analysis of affinity propagation[C]. International Conference on Knowledge Science, Engineering and Management. Berlin, Germany, 2009: 54–65.
    王开军, 张军英, 李丹, 等. 自适应仿射传播聚类[J]. 自动化学报, 2008, 33(12): 1242–1246 doi: 10.16383/j.aas.2007.12.017

    WANG Kaijun, ZHANG Junying, LI Dan, et al. Adaptive affinity propagation clustering[J]. Acta Automatica Sinica, 2008, 33(12): 1242–1246 doi: 10.16383/j.aas.2007.12.017
    YU Jian and CHENG Qiansheng. The upper bound of the optimal number of clusters in fuzzy clustering[J]. Science in China Series:Information Sciences, 2001, 44(2): 119–125 doi: 10.1007/bf02713970
    ARBELAITZ O, GURRUTXAGA I, MUGUERZA J, et al. An extensive comparative study of cluster validity indices[J]. Pattern Recognition, 2013, 46(1): 243–256 doi: 10.1016/j.patcog.2012.07.021
    SUROSO D J, CHERNTANOMWONG P, SOORAKSA P, et al. Location fingerprint technique using fuzzy C-means clustering algorithm for indoor localization[C]. TENCON 2011–2011 IEEE Region 10 Conference. IEEE, Bali, Indonesia, 2012: 88–92.
    BLAKE C L and MERZ C J. UCI repository of machine learning databases (University of California) [OL], available: http://archive.ics.uci.edu/ml/, 2018.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1696
  • HTML全文浏览量:  595
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-10
  • 修回日期:  2018-09-03
  • 网络出版日期:  2018-09-10
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回