高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MIMO雷达三维成像自适应Off-grid校正方法

王伟 胡子英 龚琳舒

王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294-1301. doi: 10.11999/JEIT180145
引用本文: 王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294-1301. doi: 10.11999/JEIT180145
Wei WANG, Ziying HU, Linshu GONG. Adaptive Off-grid Calibration Method for MIMO Radar 3D Imaging[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1294-1301. doi: 10.11999/JEIT180145
Citation: Wei WANG, Ziying HU, Linshu GONG. Adaptive Off-grid Calibration Method for MIMO Radar 3D Imaging[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1294-1301. doi: 10.11999/JEIT180145

MIMO雷达三维成像自适应Off-grid校正方法

doi: 10.11999/JEIT180145
基金项目: 国家自然科学基金(61571148, 61871143),中央高校基本科研基金(HEUCFG201823, HEUCFP201836),哈尔滨应用技术研发项目(2017R-AQXJ095)
详细信息
    作者简介:

    王伟:男,1979年生,教授,研究方向为MIMO雷达信号处理、组合导航系统和无线电导航

    胡子英:男,1994年生,博士生,研究方向为MIMO雷达信号处理及稀疏成像技术

    龚琳舒:女,1993年生,硕士生,研究方向为MIMO雷达信号处理及角度估计算法

    通讯作者:

    王伟 wangwei407@hrbeu.edu.cn

  • 中图分类号: TN958

Adaptive Off-grid Calibration Method for MIMO Radar 3D Imaging

Funds: The National Natural Science Foundation (61571148, 61871143), The Fundamental Research for the Central University (HEUCFG201823, HEUCFP201836), The Research and Development Project of Application Technology in Harbin (2017R-AQXJ095)
  • 摘要: 在压缩感知成像算法中,真实目标点一般不会恰好落在预先划定的网格点上,这种网格偏离(Off-grid)问题会带来真实回波与测量矩阵之间的失配,严重降低雷达成像的性能。针对多输入多输出(MIMO)雷达3维成像的网格失配问题,该文提出一种自适应的Off-grid校正方法,基于Off-grid目标的稀疏回波模型构造贝叶斯概率密度函数,采用最大后验概率(MAP)方法求解含有失配偏差的稀疏像。与传统方法相比,该方法可以充分利用失配参数的先验信息,自适应地更新参数,降低了失配误差的影响,并能实现对稀疏目标和噪声功率的高精度估计。仿真结果表明,该方法可以有效地实现对网格失配的优化,具有精确且稳定的成像性能。
  • 图  1  平面阵列入射波方向图

    图  2  网格失配优化前后3维成像结果对比

    图  3  网格失配成像在3个坐标面的投影

    图  4  校正失配成像在3个坐标面的成像投影

    图  5  成像误差与迭代次数关系

    图  6  成像误差随SNR变化

    图  7  成像误差随稀疏度变化

    表  1  计算复杂度对比

    方法计算复杂度迭代终止次数
    OMP方法O(IOMP×M 2N 2QU)IOMP = 16
    SACR-iMAP方法O(ISACR-iMAP×(3M 2N 2QU+2U 3)ISACR-iMAP = 15
    本文方法O((I1I0I2 (6M 2N 2QU+3U 3))I1 = 9, I0 = 3, I2 = 7
    SAF-BCS方法O(ISAF-BCS×(15M 2N 2QU+4U 3))ISAF-BCS = 38
    下载: 导出CSV
  • 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2010: 24–30.
    FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: An idea whose time has come[C]. Proceedings of 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 71–78.
    DUARTE M F and ELDAR Y C. Structured compressed sensing: From theory to applications[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4053–4085. doi: 10.1109/TSP.2011.2161982
    谢晓春. 压缩感知理论在雷达成像中的应用研究[D]. [博士论文], 中国科学院空间科学与应用研究中心, 2010.

    XIE Xiaochun. Study on the appilcation of compressive sensing in radar imaging[D]. [Ph.D. dissertation], The Center for Space Science and Applied Research, Chinese Academy of Sciences, 2010.
    ZHU Yutao and SU Yi. A type of M2-transmitter N2-receiver MIMO radar array and 3D imaging theory[J]. Science China Information Sciences, 2011, 54(10): 2147–2157. doi: 10.1007/s11432-011-4400-y
    HU Xiaowei, TONG Ningning, WANG Jianye, et al. Matrix completion-based MIMO radar imaging with sparse planar array[J]. Signal Processing, 2017, 131: 49–57. doi: 10.1016/j.sigpro.2016.07.034
    HU Xiaowei, TONG Ninging, ZHANG Yongshun, et al. Multiple-input–multiple-output radar super-resolution three-dimensional imaging based on a dimension-reduction compressive sensing[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 757–764. doi: 10.1049/iet-rsn.2015.0345
    DING Shanshan, TONG Ninging, ZHANG Yongshun, et al. Super-resolution 3D imaging in MIMO radar using spectrum estimation theory[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 304–312. doi: 10.1049/iet-rsn.2016.0233
    HU Xiaowei, TONG Ningning, SONG Baojun, et al. Joint sparsity-driven three-dimensional imaging method for multiple-input multiple-output radar with sparse antenna array[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 709–720. doi: 10.1049/iet-rsn.2016.0108
    CANDÈS E and ROMBERG J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969–985. doi: 10.1088/0266-5611/23/3/008
    BAO Qian, HONG Wen, HAN Kuoye, et al. Off-grid effect free imaging method based on improved OMP approach for DLLA 3D SAR[C]. Proceedings of 2015 IET International Radar Conference, Hangzhou, 2015: 1–4.
    BAO Qian, HAN Kuoye, PENG Xueming, et al. DLSLA 3-D SAR imaging algorithm for off-grid targets based on pseudo-polar formatting and atomic norm minimization[J]. Science China Information Sciences, 2016, 59(6): 062310. doi: 10.1007/s11432-015-5477-5
    LIU Changchang, DING Li, and CHEN Weidong. A correction and generalization to the sparse learning via iterative minimization method for target off the grid in MIMO radar imaging[C]. Proceedings of 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 895–899.
    HE Xuezhi, LIU Changchang, LIU Bo, et al. Sparse frequency diverse MIMO radar imaging for off-grid target based on adaptive iterative MAP[J]. Remote Sensing, 2013, 5(2): 631–647. doi: 10.3390/rs5020631
    丁丽. MIMO雷达稀疏成像的失配问题研究[D]. [博士论文], 中国科学技术大学, 2014.

    DING Li. Research on observation matrix mismatch for MIMO radar sparse imaging[D]. [Ph.D. dissertation], University of Science and Technology of China, 2014.
    王天云, 陆新飞, 丁丽, 等. 基于贝叶斯压缩感知的FD-MIMO雷达Off-Grid目标稀疏成像[J]. 电子学报, 2016, 44(6): 1314–1321. doi: 10.3969/j.issn.0372-2112.2016.06.008

    WANG Tianyun, LU Xinfei, DING Li, et al. Bayesian compressive sensing-based sparse imaging for Off-Grid target in frequency diverse MIMO radar[J]. Acta Electronica Sinica, 2016, 44(6): 1314–1321. doi: 10.3969/j.issn.0372-2112.2016.06.008
    王超宇, 贺亚鹏, 胡恒, 等. 基于贝叶斯压缩感知的噪声MIMO雷达目标成像[J]. 南京理工大学学报, 2013, 37(2): 262–268. doi: 10.3969/j.issn.1005-9830.2013.02.011

    WANG Chaoyu, HE Yapeng, HU Heng, et al. Noise MIMO radar target imaging based on Bayesian compressive sensing[J]. Journal of Nanjing University of Science and Technology, 2013, 37(2): 262–268. doi: 10.3969/j.issn.1005-9830.2013.02.011
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345
    王伟, 张斌, 李欣. 基于混合匹配追踪算法的MIMO雷达稀疏成像方法[J]. 电子与信息学报, 2016, 38(10): 2415–2422. doi: 10.11999/JEIT151453

    WANG Wei, ZHANG Bin, and LI Xin. An imaging method for MIMO radar based on hybrid matching pursuit[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2415–2422. doi: 10.11999/JEIT151453
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2896
  • HTML全文浏览量:  820
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-02
  • 修回日期:  2019-03-22
  • 网络出版日期:  2019-03-27
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回