高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非正交多址接入系统中基于受限马尔科夫决策过程的网络切片虚拟资源分配算法

唐伦 施颖洁 杨希希 陈前斌

唐伦, 施颖洁, 杨希希, 陈前斌. 非正交多址接入系统中基于受限马尔科夫决策过程的网络切片虚拟资源分配算法[J]. 电子与信息学报, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131
引用本文: 唐伦, 施颖洁, 杨希希, 陈前斌. 非正交多址接入系统中基于受限马尔科夫决策过程的网络切片虚拟资源分配算法[J]. 电子与信息学报, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131
Lun TANG, Yingjie SHI, Xixi YANY, Qianbin CHEN. Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131
Citation: Lun TANG, Yingjie SHI, Xixi YANY, Qianbin CHEN. Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131

非正交多址接入系统中基于受限马尔科夫决策过程的网络切片虚拟资源分配算法

doi: 10.11999/JEIT180131
基金项目: 国家自然科学基金(61571073)
详细信息
    作者简介:

    唐伦:男,1973年生,教授,主要研究方向为新一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    施颖洁:女,1993年生,硕士生,研究方向为网络虚拟资源分配

    杨希希:女,1992年生,硕士生,研究方向为网络虚拟化

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    唐伦  tangl@cqupt.edu.cn

  • 中图分类号: TN929.5

Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access

Funds: The National Natural Science Foundation of China (61571073)
  • 摘要: 针对无线接入网络切片虚拟资源分配优化问题,该文提出基于受限马尔可夫决策过程(CMDP)的网络切片自适应虚拟资源分配算法。首先,该算法在非正交多址接入(NOMA)系统中以用户中断概率和切片队列积压为约束,切片的总速率作为回报,运用受限马尔可夫决策过程理论构建资源自适应问题的动态优化模型;其次定义后决策状态,规避最优值函数中的期望运算;进一步地,针对马尔科夫决策过程(MDP)的“维度灾难”问题,基于近似动态规划理论,定义关于分配行为的基函数,替代决策后状态空间,减少计算维度;最后设计了一种自适应虚拟资源分配算法,通过与外部环境的不断交互学习,动态调整资源分配策略,优化切片性能。仿真结果表明,该算法可以较好地提高系统的性能,满足切片的服务需求。
  • 图  1  系统场景图

    图  2  切片调度模型

    图  3  状态转移图

    图  4  连续600个周期内值函数近似值与样本值比较

    图  5  不同分配行为及约束条件下,中断概率比较

    图  6  不同方案下,总速率的比较

    图  7  不同方案下,平均队列积压的比较

    表  1  基函数定义

    基函数 描述
    $P_{ln }^m(t) + {\alpha _{ln}}(t)$ 切片l 功率分配粒度
    ${N_{ln }}(t) + {\beta _{ln }}(t)$ 切片l 的子载波数
    ${(P_{ln }^m(t) + {\alpha _{ln }}(t))^2}$ 切片l 功率分配粒度平方
    ${({N_{ln }}(t) + {\beta _{ln }}(t))^2}$ 切片l 的子载波数平方
    $({N_{ln }}(t) + {\beta _{ln }}(t))(P_{ln }^m(t) + {\alpha _{ln }}(t))$ 切片l 中功率分配粒度与子载波数的乘积
    下载: 导出CSV

    表  2  基于近似动态规划的资源自适应算法

     输入: ${\chi _h}\left( {{S^a}\left( t \right)} \right)$:基函数; $\gamma $:折扣因子;
     输出: ${{η}}$:参数向量; ${\lambda _1}$, ${\lambda _2}$:拉格朗日因子;
     (1) while a new time period starts do
     (2)  t← 0; ${{η}}$← 0; ${\lambda _1}$, ${\lambda _2}$← 0; //初始化
     (3) for (t = 1; t <= T; t++)
     (4)  while
     (5)   while
     (6)    根据式(40)更新样本函数值
     (7)    if t>0 then
     (8)     根据式(39)更新参数向量 ${{η}}$
     (9)    End if
     (10)   采样外部随机变量w(t+1)的样本值
     (11)   代入更新参数向量 ${{η}}$,根据式(35)更新决策后 状态的近似函数值
     (12)   end while
     (13)   根据式(34)代入最优策略行为计算目标函数
     (14)   根据式(32)和式(33)更新 ${\lambda _1}$, ${\lambda _2}$
     (15)  end while
     (16) end for
     (17) end while
    下载: 导出CSV

    表  3  系统仿真参数

    仿真参数 仿真值
    子载波数 64
    基站发射功率 33 dBm
    路径损耗 133.6+35lg(d)
    传输天线数 1
    接收天线数 1
    基站服务范围 500 m
    单个子载波叠加用户数 1~4 (个)
    分配行为:调整功率粒度 $\alpha = \{ {\rm{0}}{\rm{.25}},{\rm{0}}{\rm{.50}},{\rm{1.00}}\} $
    分配行为:调整子载波数 $\beta {\rm{ = 1}}$
    切片1需求 (5 ms, 200 kbit/s)
    切片2需求 (10 ms, 500 kbit/s)
    切片3需求 (50 ms, 1 Mbit/s)
    下载: 导出CSV
  • 唐伦, 张亚, 梁荣, 等. 基于网络切片的网络效用最大化虚拟资源分配算法[J]. 电子与信息学报, 2017, 39(8): 1812–1818 doi: 10.11999/JEIT161322

    TANG Lun, ZHANG Ya, LIANG Rong, et al. Virtual resource allocation algorithm for network utility maximization based on network slicing[J]. Journal of Electronics&Information Technology, 2017, 39(8): 1812–1818 doi: 10.11999/JEIT161322
    SALLENT O, PEREZ-ROMERO J, FERRUS R, et al. On radio access network slicing from a radio resource management perspective[J]. IEEE Wireless Communications, 2017, 24(5): 166–174 doi: 10.1109/MWC.2017.1600220WC
    PARSAEEFARD S, DAWADI R, DERAKHSHANI M, et al. Joint user-association and resource-allocation in virtualized wireless networks[J]. IEEE Access, 2016, 4: 2738–2750 doi: 10.1109/ACCESS.2016.2560218
    BEGA D, GRAMAGLIA M, BANCHS A, et al. Optimising 5G infrastructure markets: The business of network slicing[C]. IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9.
    AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the internet of things: Communication technologies and challenges[J]. IEEE Access, 2018, 6: 3619–3647 doi: 10.1109/ACCESS.2017.2779844
    ZHANG Zihan, XIA Qinghong, YU Guanding, et al. Power control, user scheduling and resource allocation for downlink NOMA systems with imperfect channel state information[C]. 2017 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017: 1–6.
    ZHU Jianyue, WANG Jiaheng, HUANG Yongming, et al. On optimal power allocation for downlink non-orthogonal multiple access systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2744–2757 doi: 10.1109/JSAC.2017.2725618
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Joint user scheduling and power allocation optimization for energy efficient NOMA systems with imperfect CSI[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2874–2885 doi: 10.1109/JSAC.2017.2777672
    DAWADI R, PARSAEEFARD S, DERAKHSHANI M, et al. Power-efficient resource allocation in NOMA virtualized wireless networks[C]. IEEE Global Communications Conference, Washington D.C., USA, 2016: 1–6.
    ZHANG Qi, ZHU Quanyan, ZHANI M F, et al. Dynamic service placement in geographically distributed clouds[C]. 2012 IEEE 32nd International Conference on Distributed Computing Systems, Macau, China, 2012: 526–535.
    ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: potentials and challenges[J]. IEEE Communications Surveys&Tutorials, 2017, 19(2): 721–742 doi: 10.1109/COMST.2016.2621116
    CHEN Tianyi, MOKHTARI A, WANG Xin, et al. Stochastic averaging for constrained optimization with application to online resource allocation[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3078–3093 doi: 10.1109/TSP.2017.2679690
    POWELL W B. Approximate Dynamic Programming: Solving the Curses of Dimensionality[M]. NJ, Princeton: Wiley, 2007: 129–144.
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Energy-efficient resource scheduling for NOMA systems with imperfect channel state information[C]. IEEE International Conference on Communications, Paris, France, 2017: 1–5.
    RAI R, ZHU H, and WANG Jiangzhou. Resource scheduling in Non-Orthogonal Multiple Access (NOMA) based cloud-RAN systems[C]. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York City, USA, 2017: 418–422.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1556
  • HTML全文浏览量:  661
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-30
  • 修回日期:  2018-08-16
  • 网络出版日期:  2018-08-23
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回