高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短阶相干系数加权的平面波复合成像算法

郑驰超 张路南 王浩 彭虎

郑驰超, 张路南, 王浩, 彭虎. 短阶相干系数加权的平面波复合成像算法[J]. 电子与信息学报, 2018, 40(12): 2919-2927. doi: 10.11999/JEIT180120
引用本文: 郑驰超, 张路南, 王浩, 彭虎. 短阶相干系数加权的平面波复合成像算法[J]. 电子与信息学报, 2018, 40(12): 2919-2927. doi: 10.11999/JEIT180120
Chichao ZHENG, Lunan ZHANG, Hao WANG, Hu PENG. Plane-wave Compounding with Short-lag Coherence Factor Weighting[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2919-2927. doi: 10.11999/JEIT180120
Citation: Chichao ZHENG, Lunan ZHANG, Hao WANG, Hu PENG. Plane-wave Compounding with Short-lag Coherence Factor Weighting[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2919-2927. doi: 10.11999/JEIT180120

短阶相干系数加权的平面波复合成像算法

doi: 10.11999/JEIT180120
基金项目: 国家自然科学基金(61201060, 61172037)
详细信息
    作者简介:

    郑驰超:男,1984年生,副研究员,硕士生导师,研究方向为医学超声成像、信号处理

    张路南:女,1994年生,硕士生,研究方向为医学信号处理

    王浩:男,1994年生,硕士生,研究方向为电路与系统

    彭虎:男,1962年生,教授,博士生导师,研究方向为医学超声工程、电路与系统

    通讯作者:

    彭虎  hpeng@hfut.edu.cn

  • 中图分类号: TN911.7; R445.1

Plane-wave Compounding with Short-lag Coherence Factor Weighting

Funds: The National Natural Science Foundation of China (61201060, 61172037)
  • 摘要: 相干平面波复合(CPWC)成像算法采用多个角度平面波成像结果直接叠加的方式进行成像,具有速度快,质量高等优点,CPWC成像直接叠加的成像方式,忽略了平面波成像结果之间的相干性。相干系数(CF)加权算法可以有效提高成像的分辨率和对比度,降低了背景成像质量。该文提出了短阶相干系数(SLCF)加权算法,该算法采用角度差异参数来确定相干系数的阶数,根据角度差异较小的平面波输出计算相干系数,对CPWC成像结果进行加权成像。仿真和实验结果表明SLCF加权算法相对于传统的CPWC成像算法,可以改善成像的横向分辨率和对比度。相对CF和广义相干系数(GCF)算法,SLCF可以提高对比度和背景成像质量,而且运算量更低。
  • 图  1  散射点的成像结果

    图  2  (0 mm, 20 mm)处散射点横向强度变化

    图  3  斑的仿真成像结果

    图  5  坐标为(–0.5 mm, 28 mm)处的散射点横向强度变化

    图  4  点的实验成像结果

    图  6  暗斑的实验成像结果

    图  7  人体组织成像结果

    图  8  人体颈动脉切面成像结果

    表  1  不同算法仿真点的横向与纵向FWHM及仿真斑的CR, CNR和背景SNR

    算法 横向FWHM(mm) 纵向FWHM(mm) CR(dB) CNR SSNR
    CPWC 0.540 0.415 30.22\15.96 4.68\2.45 8.52\6.36
    CF 0.443 0.414 38.69\23.02 4.02\2.25 4.37\2.56
    GCF 0.495 0.413 40.64\24.28 5.15\2.60 5.57\2.96
    SLCF(8%) 0.537 0.415 38.00\21.62 5.22\2.31 6.86\3.40
    SLCF(18%) 0.530 0.415 39.86\23.45 5.31\2.46 6.25\3.15
    SLCF(30%) 0.524 0.415 40.48\24.14 5.17\2.48 5.83\3.01
    SLCF(40%) 0.516 0.415 40.29\24.46 4.89\2.50 5.45\2.93
    下载: 导出CSV

    表  2  不同算法实验点的横向与纵向FWHM及实验斑的CR, CNR和背景SNR

    算法 横向宽度(mm) 纵向宽度(mm) CR(dB) CNR SSNR
    CPWC 0.550 0.554 24.39\10.16 3.76\1.61 7.50\5.38
    CF 0.477 0.542 31.73\12.64 3.25\1.49 3.56\1.82
    GCF 0.513 0.553 33.38\13.66 4.10\1.64 4.49\1.97
    SLCF(8%) 0.546 0.550 30.20\15.82 3.84\1.89 5.57\2.96
    SLCF(18%) 0.536 0.554 32.71\17.85 4.08\2.10 5.05\2.71
    SLCF(30%) 0.522 0.555 33.63\18.54 4.06\2.17 4.71\2.61
    SLCF(40%) 0.501 0.557 33.72\18.64 3.90\2.14 4.42\2.51
    下载: 导出CSV

    表  3  人体成像数据的CR, CNR和背景SNR

    算法 CR(dB) CNR SSNR
    CPWC 26.33 2.45 3.68
    CF 26.96 1.85 1.99
    GCF 28.28 1.98 2.10
    SLCF(8%) 29.84 2.39 2.79
    SLCF(18%) 28.84 2.10 2.32
    SLCF(30%) 28.23 1.94 2.11
    SLCF(40%) 27.86 1.86 2.01
    下载: 导出CSV
  • MONTALDO G, TANTER M, BERCOFF J, et al. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2009, 56(3): 489–506 doi: 10.1109/TUFFC.2009.1067
    BERCOFF J, MONTALDO G, LOUPAS T, et al. Ultrafast compound Doppler imaging: Providing full blood flow characterization[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2011, 58(1): 134–147 doi: 10.1109/TUFFC.2011.1780
    VITI J, VOS H J, DE JONG N, et al. Contrast detection efficacy for plane vs. focused wave transmission[C]. 2014 IEEE International on Ultrasonics Symposium (IUS), Chicago, USA, 2014: 1750–1753.
    SEBASTIEN S, HERVé L, OLIVIER B, et al. Experimental evaluation of spectral-based quantitative ultrasound imaging using plane wave compounding[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2014, 61(11): 1824–1834 doi: 10.1109/TUFFC.2014.006543
    POREE J, GARCIA D, CHAYER B, et al. Non-invasive vascular elastography with plane strain incompressibility assumption using ultrafast coherent compound plane wave imaging[J]. IEEE Transactions on Medical Imaging, 2015, 34(12): 2618–2631 doi: 10.1109/TMI.2015.2450992
    DENARIE B, TANGEN T A, EKROLL I K, et al. Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets[J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1265–1276 doi: 10.1109/TMI.2013.2255310
    ZHAO Jinxin, WANG Yuanyuan, ZENG Xing, et al. Plane wave compounding based on a joint transmitting-receiving adaptive beamformer[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2015, 62(8): 1440–1452 doi: 10.1109/TUFFC.2014.006934
    TOULEMONDE M, BASSET O, TORTOLI P, et al. Thomson’s multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging[J]. Ultrasonics, 2015, 56: 390–398 doi: 10.1016/j.ultras.2014.09.006
    GASSE M, MILLIOZ F, ROUX E, et al. High-quality plane wave compounding using convolutional neural networks[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2017, 64(10): 1637–1639 doi: 10.1109/TUFFC.2017.2736890
    HOLLMAN K W, RIGBY K W, and O'DONNELL M. Coherence factor of speckle from a multi-row probe[C]. IEEE, Ultrasonics Symposium, Caesars Tahoe, USA, 1999: 1257–1260.
    NILSEN C C and HOLM S. Wiener beamforming and the coherence factor in ultrasound imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2010, 57(6): 1329–1346 doi: 10.1109/TUFFC.2010.1553
    YU Mingyue, LI Yang, MA Teng, et al. Intravascular ultrasound imaging with virtual source synthetic aperture (VSSA) focusing and coherence factor weighting[J]. IEEE Transactions on Medical Imaging, 2017, 36(10): 2171–2178 doi: 10.1109/TMI.2017.2723479
    ZHAO Jinxin, WANG Jin, and WANG Yuanyuan. Synthetic aperture ultrasound imaging with classified aperture coherence factors[J]. Journal of Medical Imaging&Health Informatics, 2017, 7(5): 1013–1020 doi: 10.1166/jmihi.2017.21301013
    LI Paichi and LI Menglin. Adaptive imaging using the generalized coherence factor[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2003, 50(2): 128–141.
    WEI G, WANG Y, and YU J. Ultrasound harmonic enhanced imaging using eigenspace-based coherence factor[J]. Ultrasonics, 2016, 72: 106–116 doi: 10.1016/j.ultras.2016.07.017
    WANG Y H and LI P C. SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2014, 61(8): 1419–1432 doi: 10.1109/TUFFC.2014.3051
    LI Y L and DAHL J J. Angular coherence in ultrasound imaging: Theory and applications[J]. Journal of the Acoustical Society of America, 2017, 141(3): 1582–1594 doi: 10.1121/1.4976960
    Plane-wave Imaging challenge in medical ultraSound[OL]. https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/, 2016.
    JENSEN J A. Field: A program for simulating ultrasound systems[J]. Medical&Biological Engineering&Computing, 1996, 34(1): 351–353.
    ZHAO Jinxin, WANG Yuanyuan, YU Jinhua, et al. Short-lag spatial coherence ultrasound imaging with adaptive synthetic transmit aperture focusing[J]. Ultrason Imaging, 2017, 39(4): 224–239 doi: 10.1177/0161734616688328
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  2124
  • HTML全文浏览量:  765
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 修回日期:  2018-06-06
  • 网络出版日期:  2018-08-30
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回