高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向显著性目标检测的SSD改进模型

余春艳 徐小丹 钟诗俊

余春艳, 徐小丹, 钟诗俊. 面向显著性目标检测的SSD改进模型[J]. 电子与信息学报, 2018, 40(11): 2554-2561. doi: 10.11999/JEIT180118
引用本文: 余春艳, 徐小丹, 钟诗俊. 面向显著性目标检测的SSD改进模型[J]. 电子与信息学报, 2018, 40(11): 2554-2561. doi: 10.11999/JEIT180118
Chunyan YU, Xiaodan XU, Shijun ZHONG. An Improved SSD Model for Saliency Object Detection[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2554-2561. doi: 10.11999/JEIT180118
Citation: Chunyan YU, Xiaodan XU, Shijun ZHONG. An Improved SSD Model for Saliency Object Detection[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2554-2561. doi: 10.11999/JEIT180118

面向显著性目标检测的SSD改进模型

doi: 10.11999/JEIT180118
基金项目: 福建省产学合作重大项目(2016H6010),福建省自然科学基金(2015J01420),福建省引导性基金(2016Y0060),福建省卫生教育联合攻关计划项目(WKJ2016-2-26)
详细信息
    作者简介:

    余春艳:女,1976年生,副教授,主要研究方向为智能信息处理、虚拟环境与仿真技术、智能算法等

    徐小丹:女,1992年生,硕士生,研究方向为图像处理

    钟诗俊:男,1994年生,硕士生,研究方向为图像处理

    通讯作者:

    钟诗俊  n160320046@fzu.edu.cn

  • 中图分类号: TP391

An Improved SSD Model for Saliency Object Detection

Funds: The Major Project in Industry-university Cooperation of Fujian Province (2016H6010), The Natural Science Foundation of Fujian Province (2015J01420), The Guiding Found of Fujian Province (2016Y0060), The Health-Education Joint Project of Fujian Province (WKJ2016-2-26)
  • 摘要: 传统显著性目标检测方法常假设只有单个显著性目标,其效果依赖显著性阈值的选取,并不符合实际应用需求。近来利用目标检测方法得到显著性目标检测框成为一种新的解决思路。SSD模型可同时精确检测多个不同尺度的目标对象,但小尺寸目标检测精度不佳。为此,该文引入去卷积模块与注意力残差模块,构建了面向多显著性目标检测的DAR-SSD模型。实验结果表明,DAR-SSD检测精度显著高于SOD模型;相比原始SSD模型,在小尺度和多显著性目标情形下性能提升明显;相比MDF和DCL等深度学习框架下的方法,也体现了复杂背景情形下的良好检测性能。
  • 图  1  SSD模型迁移网络结构图

    图  2  DAR模块

    图  3  DAR-SSD网络结构图

    图  6  多个显著性目标检测实例

    图  5  单个大尺寸显著性目标检测实例

    图  4  单个小尺寸显著性目标检测实例

    图  7  MAP方法下PR曲线对照

    图  8  NMS方法下PR曲线对照

    表  1  数据集构成(张)

    数据集 MSO ECSSD DUT-OMRON HKU-IS
    含显著性目标图像数 886 945 4893 3938
    含单显著性目标图像数 611 807 4121 1276
    含多显著性目标图像数 275 138 772 2662
    含小尺度显著性目标图像数 446 323 3067 3020
    含大尺度显著性目标图像数 440 622 1826 918
    下载: 导出CSV

    表  2  MAP方法下AP对照

    AP-MAP MSO ECSSD DUT-OMRON HKU-IS 平均
    SOD 0.7338 0.8152 0.5476 0.6938 0.6976
    SSD 0.8229 0.8645 0.6698 0.8164 0.7934
    DAR-SSD 0.8361 0.8766 0.6774 0.8317 0.8054
    下载: 导出CSV

    表  3  NMS方法下AP对照

    AP-NMS MSO ECSSD DUT-OMRON HKU-IS 平均
    SOD 0.6104 0.7157 0.4409 0.5822 0.5873
    SSD 0.8120 0.8619 0.6585 0.7974 0.7824
    DAR-SSD 0.8387 0.8665 0.6737 0.8256 0.8011
    下载: 导出CSV

    表  4  单显著性目标情形下AP对照

    AP-one MSO ECSSD DUT-OMRON HKU-IS
    SSD+NMS 0.8823 0.8841 0.6908 0.8147
    DAR-SSD+NMS 0.8844 0.8803 0.7052 0.8323
    SSD+MAP 0.8881 0.8870 0.7076 0.8483
    DAR-SSD+MAP 0.8877 0.8921 0.7127 0.8571
    下载: 导出CSV

    表  7  大尺度显著性目标情形下AP对照

    AP-large MSO ECSSD DUT-OMRON HKU-IS
    SSD+NMS 0.9016 0.8936 0.8190 0.8680
    DAR-SSD+NMS 0.9017 0.8888 0.8253 0.8723
    SSD+MAP 0.9019 0.8978 0.8330 0.8807
    DAR-SSD+MAP 0.9019 0.8997 0.8306 0.8860
    下载: 导出CSV

    表  5  多显著性目标情形下AP对照

    AP-multi MSO ECSSD DUT-OMRON HKU-IS
    SSD+NMS 0.8207 0.7684 0.5920 0.8122
    DAR-SSD+NMS 0.8583 0.8055 0.6071 0.8305
    SSD+MAP 0.8453 0.7882 0.6073 0.8198
    DAR-SSD+MAP 0.8616 0.8149 0.6137 0.8331
    下载: 导出CSV

    表  6  小尺度显著性目标情形下AP对照

    AP-small MSO ECSSD DUT-OMRON HKU-IS
    SSD+NMS 0.7984 0.7719 0.5734 0.7886
    DAR-SSD+NMS 0.8288 0.7951 0.5980 0.8142
    SSD+MAP 0.8044 0.7877 0.5786 0.8056
    DAR-SSD+MAP 0.8310 0.8067 0.5948 0.8128
    下载: 导出CSV

    表  8  多种显著性目标检测方法AP对照

    数据集 RC GLGOV MDF DCL DAR-SSD+NMS DAR-SSD+MAP
    ECSSD 0.733 0.773 0.829 0.897 0.8665 0.8766
    DUT-OMRON 0.503 0.539 0.649 0.675 0.6737 0.6774
    下载: 导出CSV
  • LIU Feng and GLEICHER M. Automatic image retargeting with fisheye-view warping[C]. Annual ACM Symposium on User Interface Software and Technology, Seattle, USA, 2005: 153–162.
    VALENTI R, SEBE N, and GEVERS T. Image saliency by isocentric curvedness and color[C]. IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 2185–2192.
    LUO Ye, YUAN Junsong, XUE Ping, et al. Saliency density maximization for efficient visual objects discovery[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(12): 1822–1834 doi: 10.1109/TCSVT.2011.2147230
    FENG Jie, WEI Yichen, TAO Litian, et al. Salient object detection by composition[C]. IEEE International Conference on IEEE Computer Vision. Barcelona, Spain, 2011: 1028–1035.
    YILDIRIM G and SUSSTRU S. FASA: Fast, accurate, and size-aware salient object detection[C]. Asian Conference on Computer Vision, Singapore, 2014: 514–528.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Object detection networks on convolutional feature maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1476–1481 doi: 10.1109/TPAMI.2016.2601099
    REDMON J, DIVVAL S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149 doi: 10.1109/TPAMI.2016.2577031
    ZHANG Jianming, SCLAROFF S, LIN Zhe, et al. Unconstrained salient object detection via proposal subset optimization[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 5733–5742.
    ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162.
    LIU Wei, ANGULEVO D, ERHAN D, et al. SSD: Single shot multibox detector[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37.
    LONG J, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651 doi: 10.1109/TPAMI.2016.2572683
    CAI Zhaowei, FAN Quanfu, FEIRS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 354–370.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916 doi: 10.1109/TPAMI.2015.2389824
    ZHANG Jianming, MA Shugao, SAMEKI M, et al. Salient object subitizing[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 4045–4054.
    CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582 doi: 10.1109/TPAMI.2014.2345401
    YAN Yijun, REN Jinchang, SUN Genyun, et al. Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement[J]. Pattern Recognition, 2018, 7, 9(7): 65–78 doi: 10.1016/j.patcog.2018.02.004
    LI Guanbin and YU Yizhou. Visual saliency detection based on multiscale deep CNN features[J]. IEEE Transaction on Image Processing, 2016, 25(11): 5012–5024 doi: 10.1109/TIP.2016.2602079
    LI Guanbin and YU Yizhou. Deep contrast learning for salient object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 478–487. doi: 10.1109/CVPR.2016.58.
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  2305
  • HTML全文浏览量:  1060
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 修回日期:  2018-07-17
  • 网络出版日期:  2018-07-27
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回