高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法

申滨 赵书锋 金纯

申滨, 赵书锋, 金纯. 基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法[J]. 电子与信息学报, 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111
引用本文: 申滨, 赵书锋, 金纯. 基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法[J]. 电子与信息学报, 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111
Bin SHEN, Shufeng ZHAO, Chun JIN. Low Complexity Iterative Parallel Interference Cancellation Detection Algorithms for Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111
Citation: Bin SHEN, Shufeng ZHAO, Chun JIN. Low Complexity Iterative Parallel Interference Cancellation Detection Algorithms for Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111

基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法

doi: 10.11999/JEIT180111
基金项目: 重庆市科委重点产业共性关键技术创新专项(cstc2015zdcy-ztzx40008)
详细信息
    作者简介:

    申滨:男,1978年生,教授,研究方向为认知无线电、大规模MIMO等

    赵书锋:男,1991年生,硕士生,研究方向为大规模MIMO信号检测

    金纯:男,1966年生,教授,研究方向为无线通信信号处理、物联网等

    通讯作者:

    申滨  shenbin@cqupt.edu.cn

  • 中图分类号: TN929.5

Low Complexity Iterative Parallel Interference Cancellation Detection Algorithms for Massive MIMO Systems

Funds: The Innovation Project of the Common Key Technology of Chongqing Science and Technology Industry (cstc2015zdcy-ztzx40008)
  • 摘要: 基于干扰消除思想该文提出一种适用于大规模MIMO系统上行链路的低复杂度迭代并行干扰消除算法,在算法实现中避免了线性检测算法所需的高复杂度 $({\cal O}({K^3}))$ 矩阵求逆运算,将复杂度保持在 $({\cal O}({K^2}))$ 。在此基础上,引入噪声预测机制,提出一种基于噪声预测的迭代并行干扰消除算法,进一步提高了硬判决检测性能。考虑天线间残留干扰,将干扰消除思想运用到软判决中,最后提出一种基于迭代并行干扰消除的低复杂度软输出信号检测算法。仿真结果表明:提出的信号检测方法的复杂度优于MMSE检测算法,经过几次简单的迭代,算法即快速收敛并获得接近甚至优于MMSE检测算法的误码率性能。
  • 图  1  算法复杂度对比

    图  3  $128 \times 32$ MIMO系统下BER性能(硬判决)

    图  2  $128 \times 16$ MIMO系统下BER性能(硬判决)

    图  4  信道估计误差下算法BER性能(硬判决)

    图  6  $128 \times 16$ MIMO系统中各算法软输出BER性能

    图  5  $128 \times 32$ MIMO系统中各算法软输出BER性能

    表  1  基于迭代并行干扰消除算法(IPIC)

     算法1 基于迭代并行干扰消除算法(IPIC)
     输入: ${{H}},{{y}},{\sigma ^2},K,{T_{{\rm{iter}}}};$
     初始化:
     (1) ${{G}} = {{{H}}^{\rm{H}}}{{H}},{{b}} = {{{H}}^{\rm{H}}}{{y}},{{\hat{ s}}^{(0)}} = {{{D}}^{ - 1}}{{{H}}^{\rm{H}}}$ ${{y}} = \{ \hat s_1^{(0)},\hat s_2^{(0)}, ·\!·\!· ,\hat s_K^{(0)}\} $
      For $t = 1:{T_{{\rm{iter}}}};$
       For $i = 1:K$;
     (2) 更新 $\hat s_i^{(t)} = \hat s_i^{(t - 1)} + \frac{{{b_i} - \displaystyle\sum\nolimits_{j = 1}^{i - 1} {{G_{ij}}} \hat s_j^{(t)} - \displaystyle\sum\nolimits_{j = i}^K {{G_{ij}}} \hat s_j^{(t - 1)}}}{{{G_{ii}}}}$
     (3) 更新 ${{\hat{ s}}^{(t)}} = {\left[ {\hat s_1^{(t)},\hat s_2^{(t)}, ·\!·\!· ,\hat s_{i - 1}^{(t)}}, {Q(\hat s_i^{(t)})}, {\hat s_{i + 1}^{(t - 1)},\hat s_{i + 2}^{(t - 1)}, ·\!·\!· ,\hat s_K^{(t - 1)}}\right]^{\rm{T}}}$
     (4)   $i = i + 1$
    end for
     (5)   $t = t + 1$
       end for
     输出 ${\hat{ s}} = {{\hat{ s}}^{({T_{{\rm{iter}}}})}}$
    下载: 导出CSV

    表  2  基于噪声预测的迭代并行干扰消除算法(NP-IPIC)

     算法2 基于噪声预测的迭代并行干扰消除算法(NP-IPIC)
     输入: ${{H}},{{y}},{\sigma ^2},K,{T_{{\rm{iter}}}};$
     初始化:
     (1) ${{G}} = {{{H}}^{\rm{H}}}{{H}},{{b}} = {{{H}}^{\rm{H}}}{{y}}$, ${{D}} = {\rm{diag}}({{G}} + {\sigma ^2}{{{I}}_K})$
        ${{\hat{ s}}^{(0)}} = Q({{{D}}^{ - 1}}{{{H}}^{\rm{H}}}{{y}}) = \{ \hat s_1^{(0)},\hat s_2^{(0)}, ·\!·\!· ,\hat s_K^{(0)}\}$
     (2) 对 ${{H}}$列范数进行降序排序,
    $o = \arg {\rm{sort}}({\tau _1},{\tau _2}, ·\!·\!· ,{\tau _K}),\ {\tau _k} = \left\| {{{{h}}_k}} \right\|_2^2,\ \forall k = 1,2, ·\!·\!· ,K$
       For $t = 1:{T_{{\rm{iter}}}}$;
        For $i = 1:K$;
     (3) 更新
    $\hat s_{o(i)}^{(t)} = \hat s_{o(i)}^{(t - 1)} + \frac{{{b_{o(i)}} - \displaystyle\sum\limits_{j = 1}^{i - 1} {{G_{o(i)o(j)}}} \hat s_{o(j)}^{(t)} - \displaystyle\sum\limits_{j = i}^K {{G_{o(i)o(j)}}} \hat s_{o(j)}^{(t - 1)}}}{{{G_{o(i)o(i)}}}}$
     (4) 判断 $i$是否等于1,如果为1,则计算 $\bar s_{o(1)}^{(t)} = Q\left(\hat s_{o(1)}^{(t)}\right)$, 噪声
    采样 $\hat n_{o(1)}^{(t)} = \hat s_{o(1)}^{(t)} - \bar s_{o(1)}^{(t)} = \hat s_{o(1)}^{(t)} - \mathbb{Q}\left(\bar s_{o(1)}^{(t)}\right)$, 如果 $i > 1$,跳过
    本步骤,执行下一步;
     (5) 更新 ${\hat{ n}} = \frac{{{{a}}_{o(i - 1)}^{\rm{H}}}}{{{{\left\| {{{{a}}_{o(i - 1)}}} \right\|}^2}}}\hat n_{o(i - 1)}^{(t)}$
     (6) $\hat n_{o(i)}^{(t)} = {{{a}}_{o(i)}}{\hat{ n}}$, $\bar s_{o(i)}^{(t)} = Q\left(\hat s_{o(i)}^{(t)} - \hat n_{o(i)}^{(t)}\right)$
     (7) 更新
    ${{\hat{ s}}^{(t)}} = {[ {\hat s_{o(1)}^{(t)},\hat s_{o(2)}^{(t)}, ·\!·\!· ,\hat s_{o(i - 1)}^{(t)}}, {\bar s_{o(i)}^{(t)}}, {\hat s_{o(i + 1)}^{(t - 1)},\hat s_{o(i + 2)}^{(t - 1)}, ·\!·\!· ,\hat s_{o(K)}^{(t - 1)}}]^{\rm{T}}}$
     (8)    $i = i + 1$
        end for
     (9)   $t = t + 1$
       end for
     (10) 根据 ${{\hat{ s}}^{({T_{{\rm{iter}}}})}}$中下标进行重新排序得到 ${{\hat{ s}}^{{\rm{final}}}}$
     输出 ${\hat{ s}} = {{\hat{ s}}^{{\rm{final}}}}$
    下载: 导出CSV

    表  3  基于迭代并行干扰消除的软输出算法(S-IPIC)

     算法3 基于迭代并行干扰消除的软输出算法(S-IPIC)
     输入: ${{H}},{{y}},{\sigma ^2},K,{T_{{\rm{iter}}}};$
     初始化:
     (1) ${G}={H}^{\rm H}{H}, {b}={H}^{\rm H}{y}$,
    ${{D}} = {\rm{diag}}({{G}} + {\sigma ^2}{{{I}}_K}) {{\hat{ s}}^{(0)}} = {{{D}}^{ - 1}}{{{H}}^{\rm{H}}}{{y}} = \{ \hat s_1^{(0)},\hat s_2^{(0)}, ·\!·\!· ,\hat s_K^{(0)}\} $
     (2) 估计方差
       For $i = 1:K;$
     (3) $V_i^{(0)} = \sum\limits_{{\alpha _n} \in {\cal{Q}}} \Bigr| {\alpha _n} - \hat s_i^{(0)}{\Bigr|^2}P({s_i} = {\alpha _n})$
       end for
       估计发送信号并计算NPI方差
       For $t = 1:{T_{{\rm{iter}}}};$
        For $i = 1:K;$
     (4) 更新
         $\hat s_i^{(t)} = {\rm{ }}\hat s_i^{(t - 1)} + \frac{{{b_i} - \displaystyle\sum\limits_{j = 1}^{i - 1} {{G_{ij}}} \hat s_j^{(t)} - \displaystyle\sum\limits_{j = i}^K {{G_{ij}}} \hat s_j^{(t - 1)}}}{{{G_{ii}}}}$
     (5) 更新 ${{\hat{ s}}^{(t)}} = {\left[ {\hat s_1^{(t)},\hat s_2^{(t)}, ·\!·\!· ,\hat s_{i - 1}^{(t)}}, {\hat s_i^{(t)}}, {\hat s_{i + 1}^{(t - 1)},\hat s_{i + 2}^{(t - 1)}, ·\!·\!· ,\hat s_K^{(t - 1)}}\right]^{\rm T}}$
     (6) 更新
         $V_i^{(t)} = \sum\limits_{{\alpha _n} \in {\cal{O}}} | {\alpha _n} - \hat s_i^{(t)}{|^2}P({s_i} = {\alpha _n})$
     (7) 计算等效信道增益和NPI方差
       ${\mu _i} = 1$,
       ${(\nu _i^{(t)})^2}{\rm{ }} = \frac{1}{{G_{ii}^2}}\left( {\sum\limits_{j = 1}^{i - 1} | {G_{ij}}{|^2}V_j^{(t)} + \sum\limits_{j = i + 1}^K | {G_{ij}}{|^2}V_j^{(t - 1)}} \right) + \frac{{{\sigma ^2}}}{{{G_{ii}}}}$
     (8) 计算SINR ${{\rm Y}_i} = {{\mu _i^2} / {{{(\nu _i^{(t)})}^2}}}$
     (9)    $i = i + 1$
        end for
     (10)   $t = t + 1$
       end for
     输出
         ${L_{i,b}} = {{\rm Y} _i}\left( {\mathop {\min }\limits_{a \in {\cal{O}}_b^0} {{\left| {\frac{{\hat s_i^{(t)}}}{{{\mu _i}}} - a} \right|}^2} - \mathop {\min }\limits_{a' \in {\cal{O}}_b^1} {{\left| {\frac{{\hat s_i^{(t)}}}{{{\mu _i}}} - a'} \right|}^2}} \right)$
    下载: 导出CSV
  • MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600 doi: 10.1109/TWC.2010.092810.091092
    LU Lu, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758 doi: 10.1109/JSTSP.2014.2317671
    MUMTAZ S, MORGADO A, HUQ K M S, et al. A survey of 5G technologies: regulatory, standardization and industrial perspectives[J]. Digital Communications&Networks, 2017, 4(2): 87–97 doi: 10.1016/j.dcan.2017.09.010
    ARAÚJO D C, MAKSYMYUK T, ALMEIDA A L F D, et al. Massive MIMO: Survey and future research topics[J]. IET Communications, 2016, 10(15): 1938–1946 doi: 10.1049/iet-com.2015.1091
    NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449 doi: 10.1109/TCOMM.2013.020413.110848
    曹海燕, 杨敬畏, 方昕, 等. 大规模MIMO系统中基于二对角矩阵分解的低复杂度检测算法[J]. 电子与信息学报, 2018, 40(2): 416–420 doi: 10.11999/JEIT170399

    CAO Haiyan, YANG Jingwei, FANG Xin, et al. Low complexity detection algorithm based on two-diagonal matrix decomposition in massive MIMO systems[J]. Journal of Electronics&Information Technology, 2018, 40(2): 416–420 doi: 10.11999/JEIT170399
    WU M, YIN B, VOSOUGHI A, et al. Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink[C]. IEEE International Symposium on Circuits and Systems, Beijing, China 2013: 2155–2158.
    DATTA T, SRINIDHI N, CHOCKALINGAM A, et al. Random-restart reactive tabu search algorithm for detection in large-MIMO systems[J]. IEEE Communications Letters, 2010, 14(12): 1107–1109 doi: 10.1109/LCOMM.2010.101210.101587
    PEREIRA AA J and SAMPAIO-NETO R. A random-list based LAS algorithm for near-optimal detection in large-scale uplink multiuser MIMO systems[C]. WSA 2015; 19th International ITG Workshop on Smart Antennas, Ilmenau, Germany, 2015: 1–5.
    WU M, YIN B, WANG G, et al. Large-scale MIMO detection for 3GPP LTE: algorithms and FPGA implementations[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 916–929 doi: 10.1109/JSTSP.2014.2313021
    TANG C, LIU C, YUAN L, et al. High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO[J]. IEEE Communications Letters, 2016, 20(3): 490–493 doi: 10.1109/LCOMM.2015.2514281
    GAO Xinyu, DAI Linglong, YUEN C, et al. Low-complexity MMSE signal detection based on Richardson method for large-scale MIMO systems[C]. Vehicular Technology Conference, Vancouver, Canada, 2014: 1–5.
    DAI Linglong, GAO Xinyu, SU Xin, et al. Low-complexity soft-output signal detection based on gauss–seidel method for uplink multiuser large-scale MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4839–4845 doi: 10.1109/TVT.2014.2370106
    QIN Xianbo, YAN Zhiting, and HE Guanghui. A near-optimal detection scheme based on joint steepest descent and jacobi method for uplink massive MIMO systems[J]. IEEE Communications Letters, 2016, 20(2): 276–279 doi: 10.1109/LCOMM.2015.2504506
    GAO Xinyu, DAI Linglong, HU Yuting, et al. Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems[C]. Global Communications Conference, Austin, USA, 2014: 3291–3295.
    YIN B, WU M, CAVALLARO J R, et al. Conjugate gradient-based soft-output detection and precoding in massive MIMO systems[C]. Global Communications Conference, Austin, USA, 2014: 3696–3701.
    XUE Ye, ZHANG Chuan, ZHANG Shunqing, et al. Steepest descent method based soft-output detection for massive MIMO uplink[C]. IEEE International Workshop on Signal Processing Systems, Dallas, USA, 2016: 273–278.
    FOSCHINI G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal, 1996, 1(2): 41–59 doi: 10.1002/bltj.2015
    FA R and LAMARE R C D. Multi-branch successive interference cancellation for MIMO spatial multiplexing systems: Design, analysis and adaptive implementation[J]. IET Communications, 2011, 5(4): 484–494 doi: 10.1049/iet-com.2009.0843
    LI P, LAMARE R C D, and FA R. Multiple feedback successive interference cancellation detection for multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2011, 10(8): 2432–2439 doi: 10.1109/TWC.2011.060811.101962
    MANDLOI M, HUSSAIN M A, and BHATIA V. Improved multiple feedback successive interference cancellation algorithms for near-optimal MIMO detection[J]. IET Communications, 2017, 11(1): 150–159 doi: 10.1049/iet-com.2016.0333
    MANDLOI M and BHATIA V. Low-complexity near-optimal iterative sequential detection for uplink massive MIMO systems[J]. IEEE Communications Letters, 2017, 21(3): 568–571 doi: 10.1109/LCOMM.2016.2637366
    倪兴, 王晓湘, 杜娟. 一种新的基于噪声预测的部分判决反馈MIMO接收算法[J]. 电子与信息学报, 2008, 30(1): 52–54

    NI Xing, WANG Xiaoxiang, and DU Juan. A noise-predictive partial decision-feedback detection for MIMO systems[J]. Journal of Electronics&Information Technology, 2008, 30(1): 52–54
    WATERS D W and BARRY J R. Noise-predictive decision-feedback detection for multiple-input multiple-output channels[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1852–1859 doi: 10.1109/TSP.2005.845474
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  3068
  • HTML全文浏览量:  1098
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-25
  • 修回日期:  2018-05-29
  • 网络出版日期:  2018-08-14
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回