高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矩阵束方法的星载MEB SAR俯仰向DBF处理方法

叶恺 禹卫东 王伟

叶恺, 禹卫东, 王伟. 基于矩阵束方法的星载MEB SAR俯仰向DBF处理方法[J]. 电子与信息学报, 2018, 40(11): 2659-2666. doi: 10.11999/JEIT180076
引用本文: 叶恺, 禹卫东, 王伟. 基于矩阵束方法的星载MEB SAR俯仰向DBF处理方法[J]. 电子与信息学报, 2018, 40(11): 2659-2666. doi: 10.11999/JEIT180076
Kai YE, Weidong YU, Wei WANG. Matrix Pencil Method Based Processing Approach for Spaceborne MEB SAR with Digital Beamforming in Elevation[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2659-2666. doi: 10.11999/JEIT180076
Citation: Kai YE, Weidong YU, Wei WANG. Matrix Pencil Method Based Processing Approach for Spaceborne MEB SAR with Digital Beamforming in Elevation[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2659-2666. doi: 10.11999/JEIT180076

基于矩阵束方法的星载MEB SAR俯仰向DBF处理方法

doi: 10.11999/JEIT180076
基金项目: 国家重点研发计划(2017YFB0502700),国家自然科学基金(61701479)
详细信息
    作者简介:

    叶恺:男,1988年生,博士生,研究方向为新体制星载SAR系统设计和信号处理

    禹卫东:男,1969年生,研究员,博士生导师,研究方向为合成孔径雷达系统设计和信号处理

    王伟:男,1985年生,博士生,研究方向为新体制星载SAR系统设计和信号处理

    通讯作者:

    叶恺  yekai_seven@hotmail.com

  • 中图分类号: TN959.74

Matrix Pencil Method Based Processing Approach for Spaceborne MEB SAR with Digital Beamforming in Elevation

Funds: The National Key Research and Development Project of China (2017YFB0502700), The National Natural Science Foundation of China (61701479)
  • 摘要: 俯仰向数字波束形成(DBF)处理是距离向多波束体制(MEB)星载合成孔径雷达(SAR)系统实现较高分辨率、超宽幅成像的关键。但是,由于存在卫星姿态误差等因素的影响,星载MEB SAR系统的DBF接收波束指向会出现偏差,这将导致在对具有强散射体的区域(如存在船舶的海面、港口等区域)进行成像时会出现鬼影目标。针对这一问题,该文提出一种基于矩阵束方法的俯仰向DBF处理方法。首先对俯仰向通道回波数据进行匹配滤波处理,并根据预设阈值寻找强散射体的峰值位置;然后利用矩阵束方法准确估计强散射体的波达角;最后利用这些信息调整俯仰向DBF加权矢量,确保DBF接收波束指向正确,从而消除鬼影目标的干扰。仿真实验验证了该方法的有效性。
  • 图  1  星载MEB SAR成像几何模型

    图  2  星载MEB SAR俯仰向DBF处理示意图

    图  4  目标P2的波达角估计值偏差

    图  3  点目标仿真结果

    图  5  分布目标仿真结果

    表  1  系统仿真参数

    轨道高度 700 km
    卫星速度 7504 m/s
    载频 5.4 GHz
    信号带宽 60 MHz
    脉冲宽度 22 μs
    天线高度 1.5 m
    俯仰向子孔径数目 23
    天线长度 10 m
    脉冲重复频率 1800 Hz
    下载: 导出CSV
  • FREEMAN A, JOHNSON W, HUNEYCUTT B, et al. The " myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324 doi: 10.1109/36.823926
    SUESS M, GRAFMUELLER B, ZAHN R, et al. A novel high resolution, wide swath SAR system[C]. Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, 2001: 1013–1015.
    YOUNIS M, ALMEIDA F, LOPEZ-DEKKER P, et al. Techniques and modes for multi-channel SAR instruments[C]. Preceedings of European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 812–817.
    KRIEGER G, HUBER S, VILLANO M, et al. SIMO and MIMO system architectures and modes for high-resolution ultra-wide-swath SAR imaging[C]. Preceedings of European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 187–192.
    YOUNIS M, HUBER S, PATYUCHENKO A, et al. Performance comparison of reflector- and planar- antenna based digital beam-forming SAR[J]. International Journal of Antenna and Propagation, 2009, 2009(6): 1–13 doi: 10.1155/2009/614931
    RINCON R, FATOYINBO T, OSMANOGLU B, et al. Development of NASA’s next generation L-band digital beamforming synthetic aperture radar (DBSAR-2)[C]. Proceedings of European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1251–1254.
    VILLANO M, KRIEGER G , and MOREIRA A. Advanced spaceborne SAR systems with planar antenna[C]. Radar Conference, Seattle, USA, 2017: 152–156.
    YAN Wei, YANG Xu, SUN Jia, et al. An airborne demonstration for high-resolution wide-swath spaceborne reflector SAR systems[C]. International Conference on Frontiers of Sensors Technologies, Shenzhen, China, 2017: 350–353.
    HUBER S, VILLANO M, YOUNIS M, et al. Tandem-L: design concepts for a next-generation Spaceborne SAR system[C]. Proceedings of European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1237–1241.
    TRIDON D, BACHMANN M, ZAN F, et al. Tandem-L observation concept-contributions and challenges of systematic monitoring of earth system dynamics[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–9.
    MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8–23 doi: 10.1109/MGRS.2015.2437353
    NANNINI M, MARTONE M, RIZZOLI P, et al. Spaceborne demonstration of coherent SAR tomography for future companion satellite SAR missions[C]. IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 129–132.
    VILLANO M, KRIEGER G, and MOREIRA A. Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4462–4479 doi: 10.1109/TGRS.2013.2282192
    VILLANO M, KRIEGER G, JAGER M, et al. Staggered SAR: Performance analysis and experiments with real data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6617–6638 doi: 10.1109/TGRS.2017.2731047
    KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46 doi: 10.1109/TGRS.2007.905974
    KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645 doi: 10.1109/TGRS.2013.2263934
    叶恺, 禹卫东, 王伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376–387 doi: 10.12000/JR17048

    YE Kai, YU Weidong, and WANG Wei. Investigation on processing scheme for MIMO SAR with STSO chirp waveforms[J]. Journal of Radars, 2017, 6(4): 376–387 doi: 10.12000/JR17048
    林玉川, 张剑云, 武拥军, 等. 双基星载HRWS-SAR系统方位向信号重构的矩阵求逆算法[J]. 雷达学报, 2017, 6(4): 388–396 doi: 10.12000/JR17060

    LIN Yuchuan, ZHANG Jianyun, WU Yongjun, et al. Matrix inversion method for azimuth reconstruction in bistatic spaceborne high-resolution wide-swath SAR system[J]. Journal of Radars, 2017, 6(4): 388–396 doi: 10.12000/JR17060
    赵庆超, 张毅, 王宇, 等. 基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法[J]. 雷达学报, 2017, 6(4): 408–419

    ZHAO Qingchao, ZHANG Yi, WANG Yu, et al. Signal reconstruction approach for multichannel SAR in azimuth based on multiframe super resolution[J]. Journal of Radars, 2017, 6(4): 408–419
    VAN T H L. Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, 2002: 428–669.
    MAKHOUL V. Adaptive digital beam-forming for high-resolution wide-swath synthetic aperture radar[D]. [Master dissertation], Polytechnic University of Catalonia, 2009: 23–91.
    BORDONI F, YOUNIS M, MAKHOUL V, et al. Adaptive digital beamforming algorithm for high-resolution, wide-swath synthetic aperture radar[C]. International Radar Symposium, Hamburg, Germany, 2009: 1–5.
    KHAN M and TUFAIL M. Comparative analysis of various matrix pencil methods for direction of arrival estimation[C]. International Conference on Image Analysis and Signal Processing, Zhejiang, China, 2010: 1–6.
    SARKAR T and PEREIRA O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials[J]. IEEE Antennas an Propagation Magazine, 1995, 37(1): 48–55 doi: 10.1109/74.370583
    HUA Y and SARKAR T. On SVD for estimating generalized eigenvalues of singular matrix pencil in noise[J]. IEEE Transaction on Signal Processing, 1991, 39(4): 892–900 doi: 10.1109/78.80911
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  630
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 修回日期:  2018-05-10
  • 网络出版日期:  2018-08-14
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回