Dynamic Routing and Spectrum Assignment Algorithm Based on Differentiated Degraded-service and Adaptive Modulation in Elastic Optical Networks
-
摘要:
面对高速发展的互联网应用,传统的路由与频谱分配(RSA)问题迎来新的挑战。融合降级服务(DS)技术的弹性光网络无疑为降低业务阻塞率,提高用户体验质量(QoE)提供了新方向。该文首先针对频谱资源的低效利用和DS导致的业务收益下降问题,建立以最小化频谱消耗和最小化DS等级、频次为联合优化目标的RSA问题的混合整数线性规划模型。随后,提出一种基于区分DS和自适应调制的动态RSA算法。该算法考虑业务等级的差异化,并整合自适应调制和DS技术。同时,设计区分业务等级的DS损失函数及DS窗口选择策略,为即将受阻业务分配理想的频谱位置和资源。此外,设计考虑频谱与收益均衡关系的网络收益函数,达到频谱资源高效利用,减少降级影响,提升网络收益的目的。最后,仿真验证了所提算法在业务阻塞率和网络收益等方面的优势。
Abstract:Oriented to the high-rapid development of Internet applications, new challenges are encountered by the conventional Routing and Spectrum Assignment (RSA). A new direction for the blocking rate reduction and the Quality of Experience (QoE) assurance is provided to the Elastic Optical Network (EON) integrated by Degraded Service (DS) technology. Due to the inefficiency of spectrum resources and the revenue decline caused by DS, a Mixed Integer Linear Programming (MILP) model is proposed with a joint objective that minimizes both spectrum consumption and the priorities and DS frequency of online services. A dynamic RSA algorithm based on differentiated DS and adaptive modulation is proposed, which considers service-priority differentiation, the adaptive modulation and DS technology. Meanwhile, DS loss function and DS window selection strategy are designed to differentiate service levels, and ideal spectrum location and resource are assigned for the impending blocked services. The network revenue function considering the relationship between spectrum and revenue balance is designed to achieve efficient utilization of spectrum resources, reduce the impact of degradation, and enhance network revenue. The simulation results verify the advantages of the proposed algorithm in terms of blocking rate, network profit, etc.
-
表 1 DRSA-DDAM算法伪代码
算法 DRSA-DDAM 输入: $\psi $, $G(N, E, C)$.
输出: blocking rate, average slot/demand, net profit.
(1) for $\psi \ne \varnothing $ do
(2) $r \leftarrow \psi $. top(), block_num$ \leftarrow $0, slot_num$ \leftarrow $0,
success_num$ \leftarrow $0;
(3) $G \leftarrow G$ updated according to ${\left[ {U_k^r} \right]_{H \times \left| C \right|}}$ in Eq. 14;
(4) ${P_K} = \{ {p_k}\} \leftarrow K - {\rm{Shortest}}(G, r)$ and Eq. 13;
(5) if ${P_K} \!\ne\! \varnothing $ then ${\left[ {S_k^r} \right]_{1 \times \left| C \right|}} \leftarrow \{ {\left[ {U_k^r} \right]_{H \times \left| C \right|}}$ according to Eq. 15};
(6) for $\forall {p_k} \in {P_K}$ do search $B_{b, e}^k$ in ${p_k}$; $\varTheta .{\rm{push}}(B_{b, e}^k)$;
(7) end for
(8) end if
(9) if $\varTheta \ne \varnothing $ then
(10) for $\forall B_{b, e}^k \!\in\! \varTheta $ do $v_{b, e}^k \leftarrow $Eq. 17($B_{b, e}^k$), $\tau _{b, e}^k \leftarrow $Eq. 18($v_{b, e}^k$);
(11) end for
(12) else if $\varTheta = \varnothing $ then block $r$, block_num++; $\psi .$ pop();
break;
(13) end if
(14) $\varTheta \leftarrow \big\{ \varTheta , {\rm{descending\; order}}, \big({M_k}, \tau _{b, e}^k\big)\big\} $;
(15) if $\varTheta .{\rm{top}}().\tau _{b, e}^k \le 0$ then
(16) Serve-win$ \leftarrow $position[$\varTheta $. top()]; allocate resource to r;
(17) slot_num+= r. allocate(slot), success_num++;
(18) net profit+= r. profit; $\psi .$ pop(), break;
(19) else if $\varTheta .{\rm{top}}().\tau _{b, e}^k > 0$ then
(20) for $\forall B_{b, e}^k \in \varTheta $ do
(21) compare ${o_{r'}}$ for $r'$ in $\Big[b \!-\! \tau _{b, e}^k, b\Big) \!\cup\! \Big(e, e \!+\! \tau _{b, e}^k\Big]$ with ${o_r}$;
(22) if each ${o_{r'}} \ge {o_r}$ then remove $B_{b, e}^k$ from $\varTheta $; continue;
(23) else then calculate $\tau _{b, e}^{l, h}$ and $\tau _{b, e}^{r, h}$ of each h$ \in \{ {p_k}\} $;
(24) end if
(25) $\tau _{b, e}^l \leftarrow $Eq. 20 and $\tau _{b, e}^r \leftarrow $Eq. 21; $\gamma \leftarrow $Eq. 22$\left(\tau _{b, e}^l\right.$, $\left.\tau _{b, e}^r\right)$;
(26) end for
(27) if $\gamma \ne \varnothing $ then
(28) for $\forall B_{b, e}^k \in \gamma $ do $w_ {\rm{sum}}^{B_{b, e}^k} \leftarrow ${Eq. 23 and Eq. 24};
(29) end for
(30) ${w_{\min }} \leftarrow $Eq. 25($\gamma $); DS-win$ \leftarrow $place\Big[$B_{b, e}^k({w_{\min }})\Big]$;
(31) DS($r'$) for r; allocate resource for $r$;
net profit+=$r$. profit;
(32) slot_num+= $r$. allocate(slot), success_num++;
(33) else then block $r$, block_num++; break;
(34) end if
(35) end if
(36) end for
(37) return blocking rate$ \leftarrow $block_num/$\left| \psi \right|$, net profit and
average slot/demand$ \leftarrow $slot_num/success_num;表 2 调制模式与数据率和传输距离的关系
调制模式 BPSK QPSK 8QAM 16QAM 调制等级 2 4 8 16 Bit/符号 1 2 3 4 频谱槽带宽(GHz) 12.5 12.5 12.5 12.5 数据率(Gbps) 12.5 25.0 37.5 50.0 传输距离(km) 9600 4800 2400 1200 -
TALEBI S, ALAM F, KATIB I, et al. Spectrum management techniques for elastic optical networks: A survey[J]. Optical Switching and Networking, 2014, 13(9): 34–48. doi: 10.1016/j.osn.2014.02.003 刘焕淋, 杜君丹, 易鹏飞, 等. 弹性光网络中面向可靠性的链路故障概率保护与保护资源重配置策略[J]. 电子与信息学报, 2017, 39(11): 2579–2586. doi: 10.11999/JEIT170150LIU Huanlin, DU Jundan, YI Pengfei, et al. Reliability-oriented links failure probability protection and backup reprovisioning strategy for elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2579–2586. doi: 10.11999/JEIT170150 刘焕淋, 易鹏飞, 张明佳, 等. 最小故障风险损失的弹性光网络多链路故障概率保护策略[J]. 电子与信息学报, 2017, 39(8): 1819–1825. doi: 10.11999/JEIT161159LIU Huanlin, YI Pengfei, ZHANG Mmingjia, et al. Multi-link failure probability protection strategy based on minimum fault risk loss in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1819–1825. doi: 10.11999/JEIT161159 ZHU Ruijie, JUE J P, YOUSEFPOUR A, et al. Multi-path fragmentation-aware advance reservation provisioning in elastic optical networks[C]. IEEE Global Communications Conference, Washington, USA, 2017: 1–6. doi: 10.1109/GLOCOM.2016.7842011. LIU Huanlin, LÜ Lei, CHEN Yong, et al. Fragmentation-avoiding spectrum assignment strategy based on spectrum partition for elastic optical networks[J]. IEEE Photonics Journal, 2017, 9(5): 1–13. doi: 10.1109/JPHOT.2017.2739750 鞠卫国, 黄善国, 徐珍珍, 等. 面向频谱融合的路由频谱分配和碎片整理算法[J]. 光子学报, 2013, 42(8): 929–935. doi: 10.3788/gzxb20134208.0929JU Weiguo, HUANG Shanguo, XU Zhenzhen, et al. Spectrum fusion oriented routing and spectrum assignment algorithm and spectrum defragmentation algorithm[J]. Acta Photonica Sinica, 2013, 42(8): 929–935. doi: 10.3788/gzxb20134208.0929 TALEBI S and ROUSKAS G N. On distance-adaptive routing and spectrum assignment in mesh elastic optical networks[J]. IEEE/OSA Journal of Optical Communications and Networking, 2017, 9(5): 456–465. doi: 10.1364/JOCN.9.000456 ROBINSON M, MILOSAVLJEVIC M, KOURTESSIS P, et al. QoE based holistic traffic engineering in SDN enabled heterogeneous transport networks[C]. International Conference on Transparent Optical Networks, Girona, Spain, 2017: 1–4. doi: 10.1109/ICTON.2017.8024878. SAVAS S S, HABIB M F, TOMATORE M, et al. Network adaptability to disaster disruptions by exploiting degraded-service tolerance[J]. IEEE Communications Magazine, 2014, 52(12): 58–65. doi: 10.1109/MCOM.2014.6979953 SAVAS S S, HABIB M F, TOMATORE M, et al. Exploiting degraded-service tolerance to improve performance of telecom networks[C]. Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014: 1–3. doi: 10.1364/OFC.2014.W2A.31. VADREVU C S K, WANG R, TORNATORE M, et al. Degraded service provisioning in mixed-line-rate WDM backbone networks using multipath routing[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 840–849. doi: 10.1109/TNET.2013.2259638 ZHONG Zhizhen, LI Jipu, HUA Nan, et al. On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks[C]. IEEE GLOBECOM, Washington, USA, 2016: 1–5. doi: 10.1109/GLOCOM.2016.7842043. YEN J Y. Finding the k shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712–716. doi: 10.1287/MNSC.17.11.712 GUO Hong, LI Yongcheng, LI Longfei, et al. Adaptive modulation and regeneration-aware routing and spectrum assignment in SBPP-based elastic optical Networks[J]. IEEE Photonics Journal, 2017, 9(2): 1–15. doi: 10.1109/JPHOT.2017.2685418 ZHU Zuqing, LU Wei, ZHANG Liang, et al. Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing[J]. Journal of Lightwave Technology, 2013, 31(1): 15–22. doi: 10.1109/JLT.2012.2227683