高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种近似动态规划的无人机机动决策方法

黄长强 赵克新 韩邦杰 魏政磊

黄长强, 赵克新, 韩邦杰, 魏政磊. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447-2452. doi: 10.11999/JEIT180068
引用本文: 黄长强, 赵克新, 韩邦杰, 魏政磊. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447-2452. doi: 10.11999/JEIT180068
Changqiang HUANG, Kexin ZHAO, Bangjie HAN, Zhenglei WEI. Maneuvering Decision-making Method of UAV Based on Approximate Dynamic Programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452. doi: 10.11999/JEIT180068
Citation: Changqiang HUANG, Kexin ZHAO, Bangjie HAN, Zhenglei WEI. Maneuvering Decision-making Method of UAV Based on Approximate Dynamic Programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452. doi: 10.11999/JEIT180068

一种近似动态规划的无人机机动决策方法

doi: 10.11999/JEIT180068
基金项目: 国家自然科学基金(61601505),航空科学基金(20155196022)
详细信息
    作者简介:

    黄长强:男,1961年生,教授,博士生导师,研究方向为无人机总体设计与技术

    赵克新:男,1992年生,硕士生,研究方向为无人机武器系统设计

    韩邦杰:男,1982年生,军代表,研究方向为机载武器系统设计

    魏政磊:男,1991年生,博士生,研究方向为无人机武器系统设计

    通讯作者:

    黄长强  13227894098@163.com

  • 中图分类号: V271.4

Maneuvering Decision-making Method of UAV Based on Approximate Dynamic Programming

Funds: The National Natural Science Foundation of China (61601505), The Aviation Science Foundation Project (20155196022)
  • 摘要: 针对空战机动决策时出现的“维数爆炸”问题,该文提出一种基于近似动态规划的群智能空战机动决策方法。首先建立无人机空气动力学模型和空战态势优势指标函数。其次,利用近似动态规划的思想,将空战过程按时间域划分为多个规划时域,在每个规划时域内,提出人工势场引导下的改进蚁狮优化算法快速逼近最优控制量,有效裁减搜索空间。通过与专家系统法进行仿真对比,表明所提方法解决高动态、实时性强的无人机机动决策问题的有效性和可行性。
  • 图  1  敌机与UAV相对几何关系

    图  2  初始优势态势下机动决策结果

    图  3  初始劣势态势下机动决策结果

    表  1  仿真实验初始参数

    类型 x(m) y(m) z(m) v(m/s) $\theta $(°) $\psi $(°)
    优势态势 无人机 5000 15000 5000 300 15 6
    敌机 8000 10000 5000 270 10 20
    劣势态势 无人机 6000 1000 6000 300 22 –15
    敌机 2000 10000 6000 300 –9 12
    下载: 导出CSV
  • VIRTANEN K and RAIVIO T. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2012, 27(4): 665–677 doi: 10.2514/1.11167
    CASBEER D W, GARCIA E, and PACHTER M. The target differential game with two defenders[J]. Journal of Intelligent and Robotic Systems, 2017, 89: 87–106 doi: 10.1007/s10846-017-0563-0
    SEO J and KIM Y. Differential geometry based collision avoidance guidance for multiple UAVs[J]. IFAC Proceedings Volumes, 2013, 46(19): 113–118 doi: 10.3182/20130902-5-DE-2040.00061
    傅莉, 王晓光. 无人战机近距空战微分对策建模研究[J]. 兵工学报, 2012, 10(10): 1210–1216

    FU Li and WANG Xiaoguang. Research on close air combat modeling of differential games for unmanned combat air vehicles[J].Acta Armamentarii, 2012, 10(10): 1210–1216
    傅莉, 谢怀福. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11): 1994–1999 doi: 10.13700/j.bn.1001-5965.2014.0756

    FU Li and XIE Huaifu. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994–1999 doi: 10.13700/j.bn.1001-5965.2014.0756
    XIAO Lizhi, SUN Dexiang, and LIU Yuwei. A combined method based on expert system and BP neural network for UAV systems fault diagnosis[C]. 2010 International Conference on Artificial Intelligence and Computational Intelligence, Piscataway, USA, 2010: 3–6. doi: 10.1109/AICI.2010.242.
    张涛, 于雷. 基于混合算法的空战机动决策[J]. 系统工程与电子技术, 2013, 35(7): 1445–1450

    ZHANG Tao and YU Lei. Decision-making for air combat maneuvering based on hybrid algorithm[J]. Systems Engineering and Electronics, 2013, 35(7): 1445–1450
    NICHOLAS E, DAVID C, COREY S, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1): 1–7 doi: 10.4172/2167-0374.1000144
    周思羽, 吴文海, 孔繁峨, 等. 基于随机决策准则的改进多级影响图机动决策方法[J]. 北京理工大学学报, 2013, 33(3): 296–301 doi: 10.3969/j.issn.1001-0645.2013.03.017

    ZHOU Siyu, WU Wenhai, and KONG Fane, et al. Improved multistage influence diagram maneuvering decision method based on stochastic decision criterions[J]. Transaction of Beijing Institute of Technology, 2013, 33(3): 296–301 doi: 10.3969/j.issn.1001-0645.2013.03.017
    KAI V and RAIVIO T. An influence diagram approach to one on one air combat[J]. International Symposium on Differential Games and Applications, 2002, 14(26): 8–11 doi: 10.3182/2002-0902-5-2300.00061
    MCGREW J S and HOW J P. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1641–1654 doi: 10.2514/1.46815
    MESMER B L and BLOEBAUM C L. Modeling decision and game theory based pedestrian velocity vector decisions with interacting individuals[J]. Safety Science, 2016, 87: 116–130 doi: 10.1016/j.ssci.2016.03.018
    BREITNER M H, PESCH H J, and GRIMM W. Complex differential games of pursuit- evasion type with stateconstraints, part2: Numerical computation of optimal open-loop strategies[J]. Journal of Optimization Theory and Applications, 1993, 78(3): 419–441 doi: 10.1007/BF00939876
    DIETTERICH T G. Hierarchical reinforcement learning with the MAXQ value function decomposition[J]. Journal of Artificial Intelligence Research, 1999, 13(1): 227–303 doi: 10.3685/CS1999-03
    ANDREY P and TAL S. Cooperative differential games strategies for active aircraft protection from a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2015, 34(3): 761–773 doi: 10.2514/1.51611
    张煜, 王楠, 陈璟. 空地多目标攻击中制导炸弹可投放区计算研究[J]. 兵工学报, 2011, 32(12): 1474–1480

    ZHANG Yu, WANG Nan, and CHEN Jing. Research on launch acceptable region for guided boms in air to ground multi target attack[J]. Acta Armamentarii, 2011, 32(12): 1474–1480
    MIRJALILI S. The ant lion optimizer[J]. Advance Engineering Software, 2015, 83(C): 80–98 doi: 10.1016/j.advengsoft.2015.01.010
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  2166
  • HTML全文浏览量:  990
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-17
  • 修回日期:  2018-06-20
  • 网络出版日期:  2018-07-30
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回