高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线虚拟网络中基于自回归滑动平均预测的在线自适应虚拟资源分配算法

唐伦 杨希希 施颖洁 陈前斌

唐伦, 杨希希, 施颖洁, 陈前斌. 无线虚拟网络中基于自回归滑动平均预测的在线自适应虚拟资源分配算法[J]. 电子与信息学报, 2019, 41(1): 16-23. doi: 10.11999/JEIT180048
引用本文: 唐伦, 杨希希, 施颖洁, 陈前斌. 无线虚拟网络中基于自回归滑动平均预测的在线自适应虚拟资源分配算法[J]. 电子与信息学报, 2019, 41(1): 16-23. doi: 10.11999/JEIT180048
Lun TANG, Xixi YANG, Yingjie SHI, Qianbin CHEN. ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks[J]. Journal of Electronics & Information Technology, 2019, 41(1): 16-23. doi: 10.11999/JEIT180048
Citation: Lun TANG, Xixi YANG, Yingjie SHI, Qianbin CHEN. ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks[J]. Journal of Electronics & Information Technology, 2019, 41(1): 16-23. doi: 10.11999/JEIT180048

无线虚拟网络中基于自回归滑动平均预测的在线自适应虚拟资源分配算法

doi: 10.11999/JEIT180048
基金项目: 国家自然科学基金(61571073)
详细信息
    作者简介:

    唐伦:男,1973年生,教授,博士生导师,主要研究方向为新一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    杨希希:女,1992年生,硕士生,研究方向为网络虚拟化

    施颖洁:女,1993年生,硕士生,研究方向为网路切片

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络

    通讯作者:

    杨希希 469519917@qq.com

  • 中图分类号: TN929.5

ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks

Funds: The National Natural Science Foundation of China (61571073)
  • 摘要:

    该文针对无线虚拟化网络中业务的不确定和信息反馈的时延而引起虚拟资源分配不合理,提出一种基于自回归滑动平均(ARMA)预测的在线自适应虚拟资源分配算法。首先,该算法以保障虚拟网络队列上溢概率为目标对时频资源和缓存资源进行联合分配,并建立虚拟网络总成本最小化的理论分析模型。其次,考虑到虚拟网络对不同资源差异化的应用需求,设计了一种多时间尺度的资源动态调度机制,在长周期上基于ARMA模型的预测信息实现缓存资源的预留策略,在短周期上基于利用大偏差原理推导的队列上溢概率对虚拟网络优先级排序,并根据确定的优先级动态调度时频资源,从而满足各虚拟网络的业务需求。仿真结果表明,该算法可有效降低比特丢失率,同时提升物理资源的利用率。

  • 图  1  系统架构

    图  2  多时间尺度的资源配置示意图

    图  3  长周期上基于ARMA预测的缓存资源预留策略流程图

    图  4  不同方案平均资源成本

    图  5  不同方案平均资源利用率

    图  6  不同方案平均比特丢失率

    图  7  不同T对应的平均资源利用率

    图  8  不同T对应的平均比特丢失率

    图  9  各虚拟网络的平均负载实际值与预测值比较

    表  1  算法1:时频资源动态调度算法

     (1) 在短周期$t$上观察当前各虚拟网络队列状态${Q_k} \left( t \right)$、预留的    缓存资源大小${B_k} $
     (2) for $k = 1;k < K;k + + $ do
     (3)   计算${a_k} $,根据式(22)估计${{\widehat m}_k} $
     (4)   if ${{\widehat m}_k} \ge {a_k} $ then
     (5)    加入虚拟网络集合${{K}}_1 $,根据式(24)估计溢出剩余时间${T_k} $
     (6)   else
     (7)    加入虚拟网络集合${{K}}_2 $,执行黄金分割搜索算法估计      ${P_{\rm of}^k} \left( {t{\rm{ + }}T} \right)$
     (8)   end if
     (9) end for
     (10) while ${{K}}_1 \ne \varnothing $ do
     (11) 令$m = 1$,选择虚拟网络$k = {\arg \min }_{k \in {{K}}_1 } \left\{ {{T_k} } \right\}$
     (12) while ${A_k} \left( t \right) > {C_k} \left( t \right)$ do
     (13)  $\begin{aligned} & m \leftarrow m + 1,{C_k} \left( t \right) \leftarrow mr, \\ &N \leftarrow N - 1 \\ \end{aligned} $
     (14) end while
     (15) ${{K}}_1 = {{K}}_1 \backslash \left\{ k \right\}$
     (16) end while
     (17) while ${{K}}_2 \ne \varnothing$ do
     (18) 令$m = 1$,选择虚拟网络${k^*} = {\arg \max }_{{k^*} \in {{K}_2}} \left\{ {P_{\rm of}^{{k^*}}\left( {t{\rm{ + }}T} \right) - {\varepsilon _{{k^*}}}} \right\}$
     (19) 重复步骤(12)—步骤(14)
     (20) ${{K}}_2 = {{K}}_2 \backslash \left\{ {k^ * } \right\}$
     (21) end while
     (22) if $N \ne 0$ then
     (23) for $k = 1;k < K;k + + $ do
     (24)  if ${C_k} \left( t \right) < \left({Q_k} \left( t \right) + {A_k} \left( t \right)\right)$ then
     (25)  加入虚拟网络集合${{K}}_3 $
     (26)  end if
     (27) end for
     (28) while ${{K}}_3 \ne \varnothing $ and $N \ne 0$
     (29) 令$m = 1$,选择虚拟$k^{''} = {\arg \min }_{k^{''} \in {{K}}_3 } \left\{ {\alpha _{{k^{''}}}} \right\}$
     (30)  $ {{while}} \quad \left({Q_{{k^{''}}}} \left( t \right) + {A_{{k^{''}}}} \left( t \right)\right) > \left({{\bar C}_{{k^{''}}}} \left( t \right) + {C_{{k^{''}}}} \left( t \right)\right)\quad {{do}} $
     (31) $m \leftarrow m + 1,{{\bar C}_{{k^{''}}}} \left( t \right) \leftarrow mr,N \leftarrow N - 1$
     (32)  end while
     (33) ${{K}}_3 = {{K}}_3 \backslash \left\{ {k^{''} } \right\}$
     (34) end while
     (35) end if
    下载: 导出CSV

    表  2  仿真参数设置

    仿真参数仿真值
    虚拟网络数量2,3,4,5,6
    系统带宽10 MHz (50 RBs)
    短周期时长1 ms
    长周期时长300 ms
    负载到达过程泊松分布
    比特到达速率$\lambda = 58.7\ {\rm kbit} $/ms
    RB单价$\alpha $1.2, 2.0, 1.5 unit/RB
    缓存资源单价$\rho $8, 6, 4 unit/kbit
    队列上溢概率$\varepsilon $0.13, 0.05, 0.12
    滑动窗口大小${T_w} $60 ms
    平滑指数$\eta $0.7
    仿真时间6600 ms
    下载: 导出CSV
  • AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2017, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458
    KALIL M, AL-DWEIK A, SHARKH M A, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666
    ZHANG Haijun, LIU Na, CHU Xiaoli, et al. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.2017.1600940
    RAHMAN M M, DESPINS C, and AFFERS S. Design optimization of wireless access virtualization based on cost & QoS trade-Off utility maximization[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6146–6162. doi: 10.1109/TWC.2016.2580505
    SALLENT O, PEREZ-ROMERO J, FERRUS R, et al. On radio access network slicing from a radio resource management perspective[J]. IEEE Wireless Communications, 2017, 24(5): 166–174. doi: 10.1109/MWC.2017.1600220WC
    JIANG Menglan, CONDOLUCI M, and MAHMOODI T. Network slicing management & prioritization in 5G mobile systems[C]. The 22th European Wireless Conference, Oulu, Finland, 2016: 1–6.
    ZHU Qixuan and ZHANG Xi. Game-theory based buffer-space and transmission-rate allocations for optimal energy-erfficiency over wireless virtual networks[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–6.
    AHMADI H, MACALUSO I, GOMEZ I, et al. Substitutability of spectrum and cloud-based antennas in virtualized wireless networks[J]. IEEE Wireless Communications, 2017, 24(2): 114–120. doi: 10.1109/MWC.2016.1500303WC
    LEANH T, TRAN N, NGO D T, et al. Resource allocation for virtualized wireless networks with backhaul constraints[J]. IEEE Communications Letters, 2017, 21(1): 148–151. doi: 10.1109/LCOMM.2016.2617307
    SCIANCALEPORE V, SAMDANIS K, COSTA-PEREZ X, et al. Mobile traffic forecasting for maximizing 5G network slicing resource utilization[C]. IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9.
    CHU Yenming, HUANG Nenfang, and LIN Shenghsiung. Quality of service provision in cloud-based storage system for multimedia delivery[J]. IEEE Systems Journal, 2014, 8(1): 292–303. doi: 10.1109/JSYST.2013.2257338
    AMIRI M and MOHAMMAD-KHANLI L. Survey on prediction models of applications for resources provisioning in cloud[J]. Journal of Network & Computer Applications, 2017, 82: 93–113.
    李捷, 刘先省, 韩志杰. 基于ARMA的无线传感器网络流量预测模型的研究[J]. 电子与信息学报, 2007, 29(5): 1224–1227.

    LI Jie, LIU Xianxing, and HAN Zhijie. Research on the ARMA based traffic prediction algorithm for wireless sensor network[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1224–1227.
    MANDJES M. Large Deviations for Gaussian Queues: Modelling Communication Networks[M]. Chichester: Wiley, 2007: 55–60.
    DEMBO A and ZEITOUNI O. Large Deviations Techniques and Applications[M]. Berlin: Springer, 2010: 303–304.
    YANG Jian, RAN Yongyi, CHEN Shuangwu, et al. Online source rate control for adaptive video streaming over HSPA and LTE-Style variable bit rate downlink channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 643–657. doi: 10.1109/TVT.2015.2398515
    GARDNER E Jr. Exponential smoothing: The state of the art—Part II[J]. International Journal of Forecasting, 2006, 22(4): 637–666. doi: 10.1016/j.ijforecast.2006.03.005
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1713
  • HTML全文浏览量:  570
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-09-26
  • 网络出版日期:  2018-10-19
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回