高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非侵入式无线无源MEMS眼压传感器

王军波 何超超 陈德勇 陈健 魏秋旭

王军波, 何超超, 陈德勇, 陈健, 魏秋旭. 非侵入式无线无源MEMS眼压传感器[J]. 电子与信息学报, 2018, 40(11): 2787-2794. doi: 10.11999/JEIT180045
引用本文: 王军波, 何超超, 陈德勇, 陈健, 魏秋旭. 非侵入式无线无源MEMS眼压传感器[J]. 电子与信息学报, 2018, 40(11): 2787-2794. doi: 10.11999/JEIT180045
Junbo WANG, Chaochao HE, Deyong CHEN, Jian CHEN, Qiuxu WEI. Non-invasive Wireless and Passive MEMS Intraocular Pressure Sensor[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2787-2794. doi: 10.11999/JEIT180045
Citation: Junbo WANG, Chaochao HE, Deyong CHEN, Jian CHEN, Qiuxu WEI. Non-invasive Wireless and Passive MEMS Intraocular Pressure Sensor[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2787-2794. doi: 10.11999/JEIT180045

非侵入式无线无源MEMS眼压传感器

doi: 10.11999/JEIT180045
基金项目: 国家自然科学基金(61372054),北京市自然科学基金(4152056)
详细信息
    作者简介:

    王军波:男,1973年生,博士,研究员,研究方向为传感器技术、MEMS技术与封装

    何超超:男,1993年生,硕士生,研究方向为无线无源压力传感器及检测系统

    陈德勇:男,1967年生,博士,研究员,研究方向为MEMS微传感器与微系统

    陈健:男,1982年生,博士,副研究员,研究方向为生物传感技术

    魏秋旭:男,1991年生,博士生,研究方向为无线无源压力传感器及检测系统

    通讯作者:

    王军波  jbwang@mail.ie.ac.cn

  • 中图分类号: TP212

Non-invasive Wireless and Passive MEMS Intraocular Pressure Sensor

Funds: The National Natural Science Foundation of China (61372054), The Beijing Municipal Natural Science Foundation (4152056)
  • 摘要: 连续监测眼压对于辅助诊断与治疗青光眼疾病具有重要作用,现有的眼压传感器存在相对灵敏度较低、中心谐振频率较高、制作工艺难度大等问题。为了解决上述问题,该文提出一种基于MEMS的非侵入式无线无源型眼压传感器。该传感器为5层堆叠结构,采用Parylene作为柔性衬底层、铜作为电极层、PDMS作为介电层,其中电极层和介电层构成两个电感和两个电容,形成C-L-C-L串联谐振电路。通过MEMS平面工艺和热塑形方法制作成能够与眼球紧密贴合的曲面形状,这种设计方案能有效地解决传感器的制作工艺难度大等问题。实验结果表明:该眼压传感器的中心谐振频率降低到了40 MHz,相对灵敏度达到1028.57 ppm/kPa,能够分辨出最小50 Pa(0.375 mmHg)的眼压值变化,为实现长期、连续性地监测眼压提供了技术支持。
  • 图  1  眼压检测系统

    图  2  传感器的单面芯片俯视图

    图  3  传感器的横截面及等效电路模型

    图  4  传感器的中间层为不同结构时的仿真模型

    图  5  工艺流程图

    图  6  种子层刻蚀工艺效果对比

    图  7  PDMS刻蚀工艺图

    图  8  传感器塑形后实物图

    图  9  实验装置示意图

    图  10  眼压传感器的实验测试曲线

    表  1  传感器的中心谐振频率相对变化与芯片间距的关系

    芯片初始间距
    (μm)
    中心频率降低(%)
    (理论值)
    中心频率降低(%)
    (仿真值)
    误差(%)
    20 29.29 29.14 0.51
    30 13.40 13.31 0.68
    40 0 0 0
    下载: 导出CSV

    表  2  传感器灵敏度提高与PDMS结构关系

    PDMS结
    构类型
    相对灵敏度
    (ppm)
    相对灵敏
    度倍数
    PDMS
    填充率
    填充率倒数
    全填满型 70.62 1.00 1.00 1.00
    圆环型 311.30 4.41 0.27 3.72
    圆柱阵列型 1160.11 16.43 0.09 11.74
    全空腔型 3064.18 43.39 NAN NAN
    下载: 导出CSV
  • 汪俊, 崔巍. 我国原发性青光眼流行病学研究进展[J]. 国际眼科杂志, 2012, 12(4): 667–670 doi: 10.3969/j.issn.1672-5123.2012.04.20

    WANG Jun and CUI Wei. Progress in epidemiological studies of primary glaucoma in China[J]. International Journal of Ophthalmology, 2012, 12(4): 667–670 doi: 10.3969/j.issn.1672-5123.2012.04.20
    PUERS R, VANDEVOORDE G, and DE BRUYKER D. Electrodeposited copper inductors for intraocular pressure telemetry[J]. Journal of Micromechanics and Microengineering, 2000, 10(2): 124–129 doi: 10.1088/0960-1317/10/2/305
    ITTOOP S M, SOOHOO J R, SEIBOLD L K, et al. Systematic review of current devices for 24-h intraocular pressure monitoring[J]. Advances in Therapy, 2016, 33(10): 1679–1690 doi: 10.1007/s12325-016-0388-4
    MCMONNIES C W. The importance of and potential for continuous monitoring of intraocular pressure[J]. Clinical and Experimental Optometry, 2017, 100(3): 203–207 doi: 10.1111/cxo.12497
    KATURI K C, ASRANI S, and RAMASUBRAMANIAN M K. Intraocular pressure monitoring sensors[J]. IEEE Sensors Journal, 2008, 8(1): 12–19 doi: 10.1109/JSEN.2007.912539
    刘德盟, 吴淼, 梅年松, 等. 无线植入式连续眼内压检测微系统发展与展望[J]. 微纳电子技术, 2013, 50(1): 57–63 doi: 10.3969/j.issn.1671-4776.2013.01.011

    LIU Demeng, WU Miao, MEI Niansong, et al. Development and outlook of wireless implantable continuously intraocular pressure detection microsystems[J]. Micronanoelectronic Technology, 2013, 50(1): 57–63 doi: 10.3969/j.issn.1671-4776.2013.01.011
    COLLINS C C. Miniature passive pressure transensor for implanting in the eye[J]. IEEE Transactions on Biomedical Engineering, 1967, BME-14(2): 74–83 doi: 10.1109/TBME.1967.4502474
    CHEN P J, SAATI S, VARMA R, et al. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 721–734 doi: 10.1109/JMEMS.2010.2049825
    XUE N, CHANG S P, and LEE J B. A SU-8-based microfabricated implantable inductively coupled passive RF wireless intraocular pressure sensor[J]. Journal of Microelectromechanical Systems, 2012, 21(6): 1338–1346 doi: 10.1109/JMEMS.2012.2206072
    BELLO S A and PASSAGLIA C L. A wireless pressure sensor for continuous monitoring of intraocular pressure in conscious animals[J]. Annals of Biomedical Engineering, 2017, 45(11): 2592–2604 doi: 10.1007/s10439-017-1896-3
    NAZAROV A, KNYAZER B, LIFSHITZ T, et al. Assessment of intraocular pressure sensing using an implanted reflective flexible membrane[J]. Journal of Biomedical Optics, 2017, 22(4): 047001 doi: 10.1117/1.JBO.22.4.047001
    ROSENGREN L, BACKLUND Y, SJOSTROM T, et al. A system for wireless intra-ocular pressure measurements using a silicon micromachined sensor[J]. Journal of Micromechanics and Microengineering, 1992, 2(3): 202–204 doi: 10.1088/0960-1317/2/3/021
    LEE J O, PARK H, DU J, et al. A microscale optical implant for continuous in vivo monitoring of intraocular pressure[J]. Microsystems&Nanoengineering, 2017, 3: 17057 doi: 10.1038/micronano.2017.57
    CHOW E Y, CHLEBOWSKI A L, and IRAZOQUI P P. A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4(6): 340–349 doi: 10.1109/TBCAS.2010.2081364
    CHEN G Z, CHAN I S, and LAM D C C. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring[J]. Sensors and Actuators A:Physical, 2013, 203(63): 112–118 doi: 10.1016/j.sna.2013.08.029
    JANG C I, SHIN1 K S, KIM M J, et al. Effects of inner materials on the sensitivity and phase depth of wireless inductive pressure sensors for monitoring intraocular pressure[J]. Applied Physics Letters, 2016, 108(10): 103701 doi: 10.1063/1.4943136
    KOUHANI M H M, WEBER A, and LI W. Wireless intraocular pressure sensor using stretchable variable inductor[C]. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, USA, 2017: 557–560.
    LIU Lijuan, WANG Junbo, CHEN Deyong, et al. Non-invasive wireless and passive mems intraocular pressure sensor based on flexible substrate[J]. Applied Mechanics and Materials, 2015, 748: 115–127 doi: 10.4028/www.scientific.net/AMM.748.115
    NOPPER R, NIEKRAWIETZ R, and REINDL L. Wireless readout of passive LC sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2450–2457 doi: 10.1109/TIM.2009.2032966
    MATEEN F, MAEDLER C, ERRAMILLI S, et al. Wireless actuation of micromechanical resonators[J]. Microsystems&Nanoengineering, 2016, 2: 16036 doi: 10.1038/micronano.2016.36
    XIANG Zhuolin, LIU Jingquan, and LEE Chengkuo. A flexible three-dimensional electrode mesh: an enabling technology for wireless brain-computer interface prostheses[J]. Microsystems&Nanoengineering, 2016, 2: 16012 doi: 10.1038/micronano.2016.12
    JELLALI R, BERTRAND V, ALEXANDRE M, et al. Photoreversibility and biocompatibility of polydimethylsiloxane-coumarin as adjustable intraocular lens material[J]. Macromolecular Bioscience, 2017, 17(7): 1600495 doi: 10.1002/mabi.201600495
    BALDWIN A and MENG E. A kirigami-based Parylene C stretch sensor[C]. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, USA, 2017: 227–230.
    HUANG Xian, LIU Yuhao, KONG Gilwoo, et al. Epidermal radio frequency electronics for wireless power transfer[J]. Microsystems&Nanoengineering, 2016, 2: 16052 doi: 10.1038/micronano.2016.52
    MCDONALD J C, METALLO S J, and WHITESIDES G M. Fabrication of a configurable, single-use microfluidic device[J]. Analytical Chemistry, 2001, 73(23): 5645–5650 doi: 10.1021/ac010631r
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1708
  • HTML全文浏览量:  980
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 修回日期:  2018-05-15
  • 网络出版日期:  2018-05-30
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回