高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进反向传播神经网络代理模型的快速多目标天线设计

董健 钦文雯 李莹娟 李茜茜 邓联文

董健, 钦文雯, 李莹娟, 李茜茜, 邓联文. 基于改进反向传播神经网络代理模型的快速多目标天线设计[J]. 电子与信息学报, 2018, 40(11): 2712-2719. doi: 10.11999/JEIT180025
引用本文: 董健, 钦文雯, 李莹娟, 李茜茜, 邓联文. 基于改进反向传播神经网络代理模型的快速多目标天线设计[J]. 电子与信息学报, 2018, 40(11): 2712-2719. doi: 10.11999/JEIT180025
Jian DONG, Wenwen QIN, Yingjuan LI, Qianqian LI, Lianwen DENG. Fast Multi-objective Antenna Design Based on Improved Back Propagation Neural Network Surrogate Model[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2712-2719. doi: 10.11999/JEIT180025
Citation: Jian DONG, Wenwen QIN, Yingjuan LI, Qianqian LI, Lianwen DENG. Fast Multi-objective Antenna Design Based on Improved Back Propagation Neural Network Surrogate Model[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2712-2719. doi: 10.11999/JEIT180025

基于改进反向传播神经网络代理模型的快速多目标天线设计

doi: 10.11999/JEIT180025
基金项目: 国家重点研发计划 (2017YFA0204600),湖南省自然科学基金 (2018JJ2533)
详细信息
    作者简介:

    董健:男,1980年生,副教授,研究方向为天线理论与设计、微波遥感、阵列信号处理等

    钦文雯:女,1993年生,硕士生,研究方向为天线自动优化技术等

    李莹娟:女,1994年生,硕士生,研究方向为天线自动优化技术等

    李茜茜:女,1993年生,硕士生,研究方向为超宽带与多频带天线设计等

    邓联文:男,1969年生,教授,研究方向为微波技术、天线等

    通讯作者:

    董健  dongjian@csu.edu.cn

  • 中图分类号: TN820

Fast Multi-objective Antenna Design Based on Improved Back Propagation Neural Network Surrogate Model

Funds: The National Key Research and Development Program of China (2017YFA0204600), The Natural Science Foundation of Hunan Province (2018JJ2533)
  • 摘要: 针对传统天线设计方法计算代价较大的缺陷,该文构建基于反向传播神经网络(BPNN)的新型天线代理模型。为解决BPNN训练易陷入局部最优的问题,采用粒子群优化(PSO)算法来改善神经网络初始结构参数,进而构建PSO-BPNN天线代理模型,并基于该模型提出多参数天线结构的快速多目标设计方法。设计实例表明,该方法在预测精度以及计算代价等方面优于现有的常用天线设计方法。所提方法对处理复杂高维参数空间天线设计问题具有实用价值。
  • 图  1  单隐层BPNN拓扑图

    图  2  PSO算法中粒子与BPNN结构参数对应关系

    图  3  基于PSO-BPNN的天线快速多目标设计方法流程图

    图  4  平面多频带天线结构

    图  6  BPNN与PSO-BPNN训练误差曲线

    图  5  各代理模型对测试数据的预测结果

    图  7  平面3频带天线的Pareto最优解集

    图  8  Pareto最优解集的回波损耗

    表  1  设计参数初始范围

    参数 d l l1 l2 l3
    范围(mm) [7,10] [26,34] [11,14] [8,10] [6,8]
    参数 l4 w w1 w2 w3
    范围(mm) [10,14] [17,23] [2,4] [2,4] [0.5,1.5]
    下载: 导出CSV

    表  2  各代理模型预测结果的均方误差

    代理模型 第1组 第2组 第3组 第4组 第5组 平均误差
    Kriging[4] 12.01 9.98 9.69 35.77 7.93 15.08
    RBFNN[9] 11.42 13.63 18.19 7.94 2.95 10.83
    BPNN 6.21 11.71 9.10 4.39 4.07 7.10
    PSO-BPNN 0.43 0.65 0.39 0.67 0.55 0.54
    下载: 导出CSV

    表  3  各代理模型以及HFSS仿真的计算耗时(s)

    预测方法 HFSS Kriging[4] RBFNN[9] BPNN PSO-BPNN
    总耗时 141.7572 0.0568 0.0134 0.0193 0.0186
    平均耗时 28.3514 0.0114 0.0027 0.0039 0.0037
    下载: 导出CSV

    表  4  平面3频带天线的的Pareto最优设计

    设计 ${{{x}}^{(1)}}$ ${{{x}}^{(2)}}$ ${{{x}}^{(3)}}$ ${{{x}}^{(4)}}$ ${{{x}}^{(5)}}$ ${{{x}}^{(6)}}$
    F1(dB) –17.57 –16.18 –15.19 –14.19 –13.27 –12.35
    F2(mm2) 629.28 608.94 590.00 580.14 555.84 533.90
    d 8.7 8.8 8.4 8.6 8.3 9.4
    l 30.4 30.6 29.5 29.3 28.8 28.1
    l1 11.8 12.9 12.8 12.4 10.9 11.2
    l2 9.0 8.8 9.0 9.2 8.8 9.7
    l3 6.4 6.8 6.8 6.8 7.0 6.6
    l4 11.5 11.5 11.1 12.3 10.9 11.0
    w 20.7 19.9 20.0 19.8 19.3 19.0
    w1 3.1 3.3 3.2 3.4 3.0 2.9
    w2 3.0 3.1 3.8 3.4 3.2 3.4
    w3 1.0 1.0 0.9 0.8 1.1 1.2
    下载: 导出CSV

    表  5  代理模型与HFSS所获得的Pareto最优解集的目标值F1比较

    代理模型 ${{{x}}^{(1)}}$ ${{{x}}^{(2)}}$ ${{{x}}^{(3)}}$ ${{{x}}^{(4)}}$ ${{{x}}^{(5)}}$ ${{{x}}^{(6)}}$
    HFSS –17.46 –15.75 –15.01 –14.69 –13.50 –12.53
    BPNN –19.19 –17.90 –16.97 –16.04 –15.13 –14.36
    PSO-BPNN –17.57 –16.18 –15.19 –14.19 –13.27 –12.35
    误差率1(%) 9.91 13.65 13.06 9.19 12.07 14.60
    误差率2(%) 0.63 2.73 1.20 3.40 1.70 1.44
    下载: 导出CSV

    表  6  不同的天线设计方法用时比较

    优化方法 电磁仿真次数 CPU时间(s)
    总时间 百分比(%)
    方法1 2400 84380 100
    方法2[6] 210 7720 9.15
    方法3 150 5624 6.67
    下载: 导出CSV
  • MOHAMMED H J, ABDULLAH, A S, ALI R S, et al. Design of a uniplanar printed triple band-rejected ultra-wideband antenna using particle swarm optimisation and the firefly algorithm[J]. IET Microwaves,Antennas&Propagation, 2016, 10(1): 31–37 doi: 10.1049/iet-map.2014.0736
    CHOI K, JANG D, KANG S, et al. Hybrid algorithm combing genetic algorithm with evolution strategy for antenna design[J]. IEEE Transactions on Magnetics, 2016, 52(3): 7209004 doi: 10.1109/TMAG.2015.2486043
    GOUDOS S K, KALIALAKIS C, and MITTRA R. Evolutionary algorithms applied to antennas and propagation: A review of state of the art[J]. International Journal of Antennas and Propagation, 2016, 2016(4): 1–12 doi: 10.1155/2016/1010459
    KOZIEL S and OGURTSOY S. Multi-objective design of antennas using variable-fidelity simulations and surrogate models[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 5931–5939 doi: 10.1109/TAP.2013.2283599
    陈晓辉, 裴进明, 郭欣欣, 等. 一种基于多维均匀采样与Kriging模型的天线快速优化方法[J]. 电子与信息学报, 2014, 36(12): 3021–3026 doi: 10.3724/SP.J.1146.2013.01826

    CHEN Xiaohui, PEI Jinming, GUO Xinxin, et al. An efficient antenna optimization method based on kriging model and multidimensional uniform sampling[J]. Journal of Electronics&Information Technology, 2014, 36(12): 3021–3026 doi: 10.3724/SP.J.1146.2013.01826
    DONG Jian, LI Qianqian, and DENG Lianwen. Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model[J]. AEUE-International Journal of Electronics and Communications, 2017, 72: 192–199 doi: 10.1016/j.aeue.2016.12.007
    LIU Bo, ALIAKBARIAN H, MA Zhongkun, et al. An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 7–18 doi: 10.1109/TAP.2013.2283605
    JACOBS J P. Efficient resonant frequency modeling for dual-band microstrip antennas by Gaussian process regression[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 337–341 doi: 10.1109/LAWP.2014.2362937
    CHEN Linglu, LIAO Cheng, LIN Wenbin, et al. Hybrid-surrogate-model-based efficient global optimization for high-dimensional antenna design[J]. Progress in Electromagnetics Research, 2012, 124(8): 85–100 doi: 10.2528/PIER11121203
    MASSA A, OLIVERI G, SALUCCI M, et al. Learning-by-examples techniques as applied to electromagnetics[J]. Journal of Electromagnetic Waves and Applications, 2017, 32(4): 516–541 doi: 10.1080/09205071.2017.1402713
    焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697–1716 doi: 10.11897/SP.J.1016.2016.01697

    JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697–1716 doi: 10.11897/SP.J.1016.2016.01697
    公茂果, 焦李成, 杨咚咚, 等. 进化多目标优化算法研究[J]. 软件学报, 2009, 20(2): 271–289 doi: 10.3724/SP.J.1001.2009.03483

    GONG Maoguo, JIAO Licheng, YANG Dongdong, et al. Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009, 20(2): 271–289 doi: 10.3724/SP.J.1001.2009.03483
    RUMELHART D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(9): 533–536 doi: 10.1038/323533a0
    KOLMOGOROV A N. On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition[J]. Doklady Akademii Nauk SSSR, 1957, 114(5): 953–956 doi: 10.1007/978-94-011-3030-1_56
    STEIN M. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143–151 doi: 10.1080/00401706.1987.10488205
    KENNEDY J and EBERHART R C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995, 4: 1942–1948. doi: 10.1109/icnn.1995.488968.
    COELLO C A C, PULIDO G T, and LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256–279 doi: 10.1109/TEVC.2004.826067
    DONG Jian, YU Xiaping, and HU Guoqiang. Design of a compact quad-band slot antenna for integrated mobile devices[J]. International Journal of Antennas and Propagation, 2016, 2016: 1–9 doi: 10.1155/2016/3717681
    ANURDHA, PATNAIK A, and SINHA S N. Design of custom-made fractal multi-band antennas using ANN-PSO[J]. IEEE Antennas&Propagation Magazine, 2011, 53(4): 94–101 doi: 10.1109/MAP.2011.6097296
    ROBINSON J and RAHMAT-SAMMI Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(2): 397–407 doi: 10.1109/TAP.2004.823969
    JIN Nanbo and RAHMAT-SAMMI Y. Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 556–567 doi: 10.1109/TAP.2007.891552
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  1966
  • HTML全文浏览量:  886
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-08
  • 修回日期:  2018-07-17
  • 网络出版日期:  2018-07-30
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回