高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多测量向量模型下的修正MUSIC算法

林云 胡强

林云, 胡强. 多测量向量模型下的修正MUSIC算法[J]. 电子与信息学报, 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001
引用本文: 林云, 胡强. 多测量向量模型下的修正MUSIC算法[J]. 电子与信息学报, 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001
Yun LIN, Qiang HU. Modified MUSIC Algorithm for Multiple Measurement Vector Models[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001
Citation: Yun LIN, Qiang HU. Modified MUSIC Algorithm for Multiple Measurement Vector Models[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001

多测量向量模型下的修正MUSIC算法

doi: 10.11999/JEIT180001
详细信息
    作者简介:

    林云:男,1968年生,副教授,研究方向为压缩感知、自适应滤波算法

    胡强:男,1993年生,硕士生,研究方向为压缩感知

    通讯作者:

    胡强  huqiang0424@qq.com

  • 中图分类号: TN911.7

Modified MUSIC Algorithm for Multiple Measurement Vector Models

  • 摘要: 压缩感知多测量向量(MMV)模型用于解决具有相同稀疏结构的多快拍问题,在传统阵列信号处理应用中多重信号分类(MUSIC)方法是一种常见的方法,但当快拍数不足(低于稀疏度)时其性能将急剧恶化。Kim等人(2012)推导出一种修正的MUSIC谱,并将压缩重构方法和MUSIC算法结合提出压缩感知MUSIC算法(CS-MUSIC),能够有效克服快拍数不足的问题。该文将Kim等人的结论扩展到一般情形,并基于传统的MUSIC谱和CS-MUSIC谱提出一种修正的MUSIC算法(MMUSIC)。仿真结果表明所提算法能够有效克服快拍数不足的问题,并且具有比CS-MUSIC算法和压缩感知贪婪算法更高的重构概率。
  • 图  1  各算法重构概率P与稀疏度K的关系

    图  2  重构概率P与观测数M的关系

    图  3  q值选取对MMUSIC算法重构性能的影响

  • CANDÈS E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425 doi: 10.1109/TIT.2006.885507
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306 doi: 10.1109/TIT.2006.871582
    CANDÉS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 53(2): 489–509 doi: 10.1109/TIT.2005.862083
    BLANCHARD J D, CERMAK M, HANLE D, et al. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694–1704 doi: 10.1109/TSP.2014.2301980
    CHOI J W, SHIM B, and DING Y. Compressed sensing for wireless communications: Useful tips and tricks[J]. IEEE Communications Surveys and Tutorials, 2017, 19(3): 1527–1550 doi: 10.1109/COMST.2017.2664421
    GUO Jie, SONG Bin, and HE Ying. A survey on compressed sensing in vehicular infotainment systems[J]. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2662–2680 doi: 10.1109/COMST.2017.2705027
    YANG Lin, SONG Kun, and SIU Yunming. Iterative clipping noise recovery of ofdm signals based on compressed sensing[J]. IEEE Transactions on Broadcasting, 2017, 63(4): 706–713 doi: 10.1109/TBC.2017.2669641
    DU Zhaohui, CHEN Xuefeng, ZHANG Han, et al. Compressed-Sensing-based periodic impulsive feature detection for wind turbine systems[J]. IEEE Transactions on Industrial Informatics, 2017, 12(6): 2933–2945 doi: 10.1109/TII.2017.2666840
    WU Kai and LIU Jing. Learning large-scale fuzzy cognitive maps based on compressed sensing and application in reconstructing gene regulatory networks[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1546–1560 doi: 10.1109/TFUZZ.2017.2741444
    石要武, 陈淼, 单泽涛, 等. 基于特征空间MUSIC算法的相干信号波达方向空间平滑估计[J]. 吉林大学学报(工学版), 2017, 47(1): 268–273 doi: 10.13229/j.cnki.jdxbgxb201701039

    SHI Yaowu, CHEN Miao, SHAN Zetao, et al. Spatial smoothing technique for coherent signal DOA estimation based on eigen space MUSIC algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 268–273 doi: 10.13229/j.cnki.jdxbgxb201701039
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transaction on Signal Processing, 2005, 53(7): 2477–2488 doi: 10.1109/TSP.2005.849172
    BRESLER Y. Spectrum-blind sampling and compressive sensing for continuous-index signals[C]. Information Theory and Applications Workshop, San Diego, USA, 2008: 547–554.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280 doi: 10.1109/TAP.1986.1143830
    KIM J M, LEE O K, and YE J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301 doi: 10.1109/TIT.2011.2171529
    吕志丰, 雷宏. 基于差值映射的压缩感知MUSIC算法[J]. 电子与信息学报, 2015, 37(8): 1874–1878 doi: 10.11999/JEIT141542

    LÜ Zhifeng and LEI Hong. Compressive sensing MUSIC algorithm based on difference map[J]. Journal of Electronics&Information Technology, 2015, 37(8): 1874–1878 doi: 10.11999/JEIT141542
    TROPP J A. Algorithms for simultaneous sparse approximation. Part II: convex relaxation[J]. Signal Processing, 2006, 86(3): 589–602 doi: 10.1109/TSP.2016.2637314
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transaction on Signal Processing, 2007, 55(7): 3704–3716 doi: 10.1109/TSP.2007.894265
    BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982–2001 doi: 10.1109/TIT.2010.2040894
  • 加载中
图(3)
计量
  • 文章访问数:  1561
  • HTML全文浏览量:  558
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-02
  • 修回日期:  2018-06-04
  • 网络出版日期:  2018-07-18
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回