A High-precision Method of the Rotation Compensation and Cross-range Scaling for ISAR Imaging
-
摘要: 传统逆合成孔径雷达(ISAR)成像算法忽略了目标回波的高阶转动相位的影响,导致方位向聚焦效果较差,且无法直接从目标图像中获取目标尺寸信息。该文提出一种转动补偿和方位定标方法。该方法采用回波的全部方位信息,通过构造局部平均多普勒趋势(LADT)信号获取目标回波的多普勒变化趋势。进一步利用随机采样一致(RANSAC)算法估计多普勒调频率及目标有效转动速度,实现高精度转动补偿与方位定标。仿真与实测数据实验验证了该方法的有效性。Abstract: Traditional Inverse SAR (ISAR) imaging algorithms neglect the impact of high-order rotational phase in the signal, which may make ISAR images of a target defocused. Further, the size of a target can not be obtained from ISAR image directly. In this study, an effective method to achieve the rotation compensation and cross-range scaling for ISAR imaging is proposed. Firstly, all the signals of the target are used to form the Local Average Doppler Trend (LADT) signal. Subsequently, RANdom SAmple Consensus (RANSAC) algorithm is performed to estimate the Doppler rate and effective rotational velocity. Finally, high-precision rotation compensation and cross-range scaling can be accomplished. Simulation and real data experiments validate the effectiveness of the proposed method.
-
表 1 仿真参数设置
带宽 240 MHz 距离采样点数 349 中心频率 10 GHz 方位采样点数 512 采样频率 216 MHz 距离分辨率 0.625 m 脉冲重复频率 500 Hz 方位分辨率 0.3 m 表 2 仿真实验估计结果列表
理论值 估计值 相对误差(%) 转动速度(rad/s) 0.0488 0.0491 0.61 飞机长度(m) 70.00 69.77 0.33 翼展宽度(m) 60.00 60.42 0.70 表 3 本文方法与其他方法运算时间对比(s)
本文方法 TVAR法 RAT法 LPFT_IC法 ISSM方法 11.023539 9.916357 144.723539 249.244348 56.348508 表 4 实测数据系统参数
带宽 620 MHz 距离单元数 256 载频 5.5 GHz 方位单元数 256 PRF 50.4 Hz 采样频率 630 MHz 表 5 各方法图像熵值列表
RD图像熵值 7.5768 RAT法图像熵值 7.5012 本文方法图像熵值 7.2795 LPFT_IC法图像熵值 7.4201 TVAR法图像熵值 7.4034 ISSM方法图像熵值 7.4009 -
XU Gang, YANG Lei, BI Guoan, et al. Enhanced ISAR imaging and motion estimation with parametric and dynamic sparse bayesian learning[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 940–952 doi: 10.1109/TCI.2017.2750330 XU Gang, XING Mengdao, ZHANG Lei, et al. Bayesian inverse synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1150–1154 doi: 10.1109/LGRS.2011.2158797 吴敏, 张磊, 刘松杨, 等. OFDM-ISAR的稀疏优化成像与运动补偿[J]. 雷达学报, 2016, 5(1): 72–81 doi: 10.12000/JR16017WU Min, ZHANG Lei, LIU Songyang, et al. OFDM-ISAR sparse optimization imaging and motion compensation[J]. Journal of Radars, 2016, 5(1): 72–81 doi: 10.12000/JR16017 谷文堃, 王党卫, 马晓岩. 分布式MIMO-ISAR子图像融合方 法[J]. 雷达学报, 2017, 6(1): 90–97 doi: 10.12000/JR16042GU Wenkun, WANG Dangwei, and MA Xiaoyan. Distributed MIMO-ISAR sub-image fusion method[J]. Journal of Radars, 2017, 6(1): 90–97 doi: 10.12000/JR16042 周叶剑, 张磊, 王虹现, 等. 空间轨道目标的逆合成孔径雷达成像质量分析[J]. 雷达学报, 2017, 6(1): 17–24 doi: 10.12000/JR16136ZHOU Yejian, ZHANG Lei, WANG Hongxian, et al. Performance analysis on ISAR imaging of space targets[J]. Journal of Radars, 2017, 6(1): 17–24 doi: 10.12000/JR16136 邢孟道, 高悦欣, 陈溅来, 等. 海上舰船目标雷达成像算法[J]. 科技导报, 2017, 35(20): 53–60 doi: 10.3981/j.issn.1000-7857.2017.20.005XING Mengdao, GAO Yuexin, CHEN Jianlai, et al. A survey of the radar imaging algorithms for ship targets on the sea[J]. Science and Technology Review, 2017, 35(20): 53–60 doi: 10.3981/j.issn.1000-7857.2017.20.005 高悦欣, 李震宇, 邢孟道, 等. 一种海面舰船目标ISAR成像时间段选择方法[J]. 西安电子科技大学学报, 2017, 44(2): 27–32 doi: 10.3969/j.issn.1001-400.017.0.005GAO Yuexin, LI Zhenyu, XING Mengdao, et al. New ISAR imaging interval selection method for ship targets on the sea[J]. Journal of Xidian University, 2017, 44(2): 27–32 doi: 10.3969/j.issn.1001-400.017.0.005 HUANG Darong, FENG Cunqian, TONG Ningning, et al. 2D spatial-variant phase errors compensation for ISAR imagery based on contrast maximisation[J]. Electronics Letters, 2016, 52(17): 1480–1481 doi: 10.1049/el.2016.1595 盛佳恋, 张磊, 邢孟道, 等. 联合运动补偿的逆合成孔径雷达成像方位定标方法[J]. 系统工程与电子技术, 2014, 36(5): 859–865 doi: 10.3969/j.issn.1001-506X.2014.05.08SHENG Jialian, ZHANG Lei, XING Mengdao, et al. Joint method of motion compensation and cross-range scaling for inverse synthetic aperture radar imaging[J]. Systems Engineering and Electronics, 2014, 36(5): 859–865 doi: 10.3969/j.issn.1001-506X.2014.05.08 李玺, 顾红, 刘国岁. ISAR成像中转角估计的新方法[J]. 电子学报, 2000, 28(6): 44–47 doi: 10.3321/j.issn:0372-2112.2000.06.012LI Xi, GU Hong, and LIU Guosui. A method for estimating the rotation angle of the ISAR image[J]. Acta Electronica Sinica, 2000, 28(6): 44–47 doi: 10.3321/j.issn:0372-2112.2000.06.012 MARCO M. Novel approach for ISAR image cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 281–294 doi: 10.1109/TAES.2008.4517004 SHENG Jialian, XING Mengdao, ZHANG Lei, et al. ISAR cross-range scaling by using sharpness maximization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 165–169 doi: 10.1109/LGRS.2014.2330625 XU Gang, YANG Lei, BI Guoan, et al. Maneuvering target imaging and scaling by using sparse inverse synthetic aperture[J]. Signal Processing, 2017, 137(C): 149–159 doi: 10.1016/j.sigpro.2017.01.016 XU Gang, XING Mengdao, ZHANG Lei, et al. Sparse apertures ISAR imaging and scaling for maneuvering targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2942–2956 doi: 10.1109/JSTARS.2014.2315630 MARTIN F and ROBERT B. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381–395 doi: 10.1145/358669.358692 IMRE E and HILTON A. Order statistics of RANSAC and their practical application[J]. International Journal of Computer Vision, 2015, 111(3): 276–297 doi: 10.1007/s11263-014-0745-1 邢孟道, 保铮, 李真芳, 等. 雷达成像算法进展[M]. 北京: 电子工业出版社, 2014: 143–178. 徐刚, 杨磊, 张磊, 等. 一种加权最小熵的ISAR自聚焦算法[J]. 电子与信息学报, 2011, 33(8): 1809–1815 doi: 10.3724/SP.J.1146.2010.01153XU Gang, YANG Lei, ZHANG Lei, et al. Weighted minimum entropy autofocus algorithm for ISAR imaging[J]. Journal of Electronics&Information Technology, 2011, 33(8): 1809–1815 doi: 10.3724/SP.J.1146.2010.01153 符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898 doi: 10.11999/JEIT170303FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics&Information Technology, 2017, 39(12): 2889–2898 doi: 10.11999/JEIT170303 HUANG Darong, ZHANG Lei, XING Mengdao, et al. Doppler ambiguity removal and ISAR imaging of group targets with sparse decomposition[J]. IET Radar, Sonar&Navigation, 2016, 10(9): 1711–1719 doi: 10.1049/iet-rsn.2016.0036 STEVEN K. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. New Jersey: Prentice-Hall PTR, 1993: 419–479.