高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高精度的ISAR转动补偿和方位定标方法

刘鑫阁 邢孟道 孙光才

刘鑫阁, 邢孟道, 孙光才. 一种高精度的ISAR转动补偿和方位定标方法[J]. 电子与信息学报, 2018, 40(9): 2250-2257. doi: 10.11999/JEIT171209
引用本文: 刘鑫阁, 邢孟道, 孙光才. 一种高精度的ISAR转动补偿和方位定标方法[J]. 电子与信息学报, 2018, 40(9): 2250-2257. doi: 10.11999/JEIT171209
Xinge LIU, Mengdao XING, Guangcai SUN. A High-precision Method of the Rotation Compensation and Cross-range Scaling for ISAR Imaging[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2250-2257. doi: 10.11999/JEIT171209
Citation: Xinge LIU, Mengdao XING, Guangcai SUN. A High-precision Method of the Rotation Compensation and Cross-range Scaling for ISAR Imaging[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2250-2257. doi: 10.11999/JEIT171209

一种高精度的ISAR转动补偿和方位定标方法

doi: 10.11999/JEIT171209
基金项目: 国家自然科学基金创新群体(61621005)
详细信息
    作者简介:

    刘鑫阁:女,1994 年生,博士生,研究方向为ISAR成像

    邢孟道:男,1975 年生,教授,博士生导师,研究方向为雷达成像、动目标检测

    孙光才:男,1985 年生,博士,副教授,研究方向为雷达成像、动目标检测

    通讯作者:

    刘鑫阁  liuxinge1994@163.com

  • 中图分类号: TN958

A High-precision Method of the Rotation Compensation and Cross-range Scaling for ISAR Imaging

Funds: The Foundation for Innovative Research Groups of the National Natural Science Foundation of China (61621005)
  • 摘要: 传统逆合成孔径雷达(ISAR)成像算法忽略了目标回波的高阶转动相位的影响,导致方位向聚焦效果较差,且无法直接从目标图像中获取目标尺寸信息。该文提出一种转动补偿和方位定标方法。该方法采用回波的全部方位信息,通过构造局部平均多普勒趋势(LADT)信号获取目标回波的多普勒变化趋势。进一步利用随机采样一致(RANSAC)算法估计多普勒调频率及目标有效转动速度,实现高精度转动补偿与方位定标。仿真与实测数据实验验证了该方法的有效性。
  • 图  1  ISAR成像几何模型

    图  2  算法流程图

    图  3  仿真飞机模型

    图  4  飞机目标定标和高精度补偿成像结果

    图  5  不同信噪比条件下的估计误差对比

    图  6  舰船目标精聚焦成像结果

    图  7  第61个距离单元聚焦对比

    表  1  仿真参数设置

     带宽 240 MHz 距离采样点数 349
     中心频率 10 GHz 方位采样点数 512
     采样频率 216 MHz 距离分辨率 0.625 m
     脉冲重复频率 500 Hz 方位分辨率 0.3 m
    下载: 导出CSV

    表  2  仿真实验估计结果列表

    理论值 估计值 相对误差(%)
    转动速度(rad/s) 0.0488 0.0491 0.61
    飞机长度(m) 70.00 69.77 0.33
    翼展宽度(m) 60.00 60.42 0.70
    下载: 导出CSV

    表  3  本文方法与其他方法运算时间对比(s)

    本文方法 TVAR法 RAT法 LPFT_IC法 ISSM方法
    11.023539 9.916357 144.723539 249.244348 56.348508
    下载: 导出CSV

    表  4  实测数据系统参数

    带宽 620 MHz 距离单元数 256
    载频 5.5 GHz 方位单元数 256
    PRF 50.4 Hz 采样频率 630 MHz
    下载: 导出CSV

    表  5  各方法图像熵值列表

     RD图像熵值 7.5768  RAT法图像熵值 7.5012
     本文方法图像熵值 7.2795  LPFT_IC法图像熵值 7.4201
     TVAR法图像熵值 7.4034  ISSM方法图像熵值 7.4009
    下载: 导出CSV
  • XU Gang, YANG Lei, BI Guoan, et al. Enhanced ISAR imaging and motion estimation with parametric and dynamic sparse bayesian learning[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 940–952 doi: 10.1109/TCI.2017.2750330
    XU Gang, XING Mengdao, ZHANG Lei, et al. Bayesian inverse synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1150–1154 doi: 10.1109/LGRS.2011.2158797
    吴敏, 张磊, 刘松杨, 等. OFDM-ISAR的稀疏优化成像与运动补偿[J]. 雷达学报, 2016, 5(1): 72–81 doi: 10.12000/JR16017

    WU Min, ZHANG Lei, LIU Songyang, et al. OFDM-ISAR sparse optimization imaging and motion compensation[J]. Journal of Radars, 2016, 5(1): 72–81 doi: 10.12000/JR16017
    谷文堃, 王党卫, 马晓岩. 分布式MIMO-ISAR子图像融合方 法[J]. 雷达学报, 2017, 6(1): 90–97 doi: 10.12000/JR16042

    GU Wenkun, WANG Dangwei, and MA Xiaoyan. Distributed MIMO-ISAR sub-image fusion method[J]. Journal of Radars, 2017, 6(1): 90–97 doi: 10.12000/JR16042
    周叶剑, 张磊, 王虹现, 等. 空间轨道目标的逆合成孔径雷达成像质量分析[J]. 雷达学报, 2017, 6(1): 17–24 doi: 10.12000/JR16136

    ZHOU Yejian, ZHANG Lei, WANG Hongxian, et al. Performance analysis on ISAR imaging of space targets[J]. Journal of Radars, 2017, 6(1): 17–24 doi: 10.12000/JR16136
    邢孟道, 高悦欣, 陈溅来, 等. 海上舰船目标雷达成像算法[J]. 科技导报, 2017, 35(20): 53–60 doi: 10.3981/j.issn.1000-7857.2017.20.005

    XING Mengdao, GAO Yuexin, CHEN Jianlai, et al. A survey of the radar imaging algorithms for ship targets on the sea[J]. Science and Technology Review, 2017, 35(20): 53–60 doi: 10.3981/j.issn.1000-7857.2017.20.005
    高悦欣, 李震宇, 邢孟道, 等. 一种海面舰船目标ISAR成像时间段选择方法[J]. 西安电子科技大学学报, 2017, 44(2): 27–32 doi: 10.3969/j.issn.1001-400.017.0.005

    GAO Yuexin, LI Zhenyu, XING Mengdao, et al. New ISAR imaging interval selection method for ship targets on the sea[J]. Journal of Xidian University, 2017, 44(2): 27–32 doi: 10.3969/j.issn.1001-400.017.0.005
    HUANG Darong, FENG Cunqian, TONG Ningning, et al. 2D spatial-variant phase errors compensation for ISAR imagery based on contrast maximisation[J]. Electronics Letters, 2016, 52(17): 1480–1481 doi: 10.1049/el.2016.1595
    盛佳恋, 张磊, 邢孟道, 等. 联合运动补偿的逆合成孔径雷达成像方位定标方法[J]. 系统工程与电子技术, 2014, 36(5): 859–865 doi: 10.3969/j.issn.1001-506X.2014.05.08

    SHENG Jialian, ZHANG Lei, XING Mengdao, et al. Joint method of motion compensation and cross-range scaling for inverse synthetic aperture radar imaging[J]. Systems Engineering and Electronics, 2014, 36(5): 859–865 doi: 10.3969/j.issn.1001-506X.2014.05.08
    李玺, 顾红, 刘国岁. ISAR成像中转角估计的新方法[J]. 电子学报, 2000, 28(6): 44–47 doi: 10.3321/j.issn:0372-2112.2000.06.012

    LI Xi, GU Hong, and LIU Guosui. A method for estimating the rotation angle of the ISAR image[J]. Acta Electronica Sinica, 2000, 28(6): 44–47 doi: 10.3321/j.issn:0372-2112.2000.06.012
    MARCO M. Novel approach for ISAR image cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 281–294 doi: 10.1109/TAES.2008.4517004
    SHENG Jialian, XING Mengdao, ZHANG Lei, et al. ISAR cross-range scaling by using sharpness maximization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 165–169 doi: 10.1109/LGRS.2014.2330625
    XU Gang, YANG Lei, BI Guoan, et al. Maneuvering target imaging and scaling by using sparse inverse synthetic aperture[J]. Signal Processing, 2017, 137(C): 149–159 doi: 10.1016/j.sigpro.2017.01.016
    XU Gang, XING Mengdao, ZHANG Lei, et al. Sparse apertures ISAR imaging and scaling for maneuvering targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2942–2956 doi: 10.1109/JSTARS.2014.2315630
    MARTIN F and ROBERT B. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381–395 doi: 10.1145/358669.358692
    IMRE E and HILTON A. Order statistics of RANSAC and their practical application[J]. International Journal of Computer Vision, 2015, 111(3): 276–297 doi: 10.1007/s11263-014-0745-1
    邢孟道, 保铮, 李真芳, 等. 雷达成像算法进展[M]. 北京: 电子工业出版社, 2014: 143–178.
    徐刚, 杨磊, 张磊, 等. 一种加权最小熵的ISAR自聚焦算法[J]. 电子与信息学报, 2011, 33(8): 1809–1815 doi: 10.3724/SP.J.1146.2010.01153

    XU Gang, YANG Lei, ZHANG Lei, et al. Weighted minimum entropy autofocus algorithm for ISAR imaging[J]. Journal of Electronics&Information Technology, 2011, 33(8): 1809–1815 doi: 10.3724/SP.J.1146.2010.01153
    符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898 doi: 10.11999/JEIT170303

    FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics&Information Technology, 2017, 39(12): 2889–2898 doi: 10.11999/JEIT170303
    HUANG Darong, ZHANG Lei, XING Mengdao, et al. Doppler ambiguity removal and ISAR imaging of group targets with sparse decomposition[J]. IET Radar, Sonar&Navigation, 2016, 10(9): 1711–1719 doi: 10.1049/iet-rsn.2016.0036
    STEVEN K. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. New Jersey: Prentice-Hall PTR, 1993: 419–479.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  1884
  • HTML全文浏览量:  908
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-21
  • 修回日期:  2018-05-02
  • 网络出版日期:  2018-07-12
  • 刊出日期:  2018-09-01

目录

    /

    返回文章
    返回