高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的无线传感器网络中异常节点检测定位算法

蒋俊正 杨杰 欧阳缮

蒋俊正, 杨杰, 欧阳缮. 一种新的无线传感器网络中异常节点检测定位算法[J]. 电子与信息学报, 2018, 40(10): 2358-2364. doi: 10.11999/JEIT171207
引用本文: 蒋俊正, 杨杰, 欧阳缮. 一种新的无线传感器网络中异常节点检测定位算法[J]. 电子与信息学报, 2018, 40(10): 2358-2364. doi: 10.11999/JEIT171207
Junzheng JIANG, Jie YANG, Shan OUYANG. Novel Method for Outlier Nodes Detection and Localization in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2358-2364. doi: 10.11999/JEIT171207
Citation: Junzheng JIANG, Jie YANG, Shan OUYANG. Novel Method for Outlier Nodes Detection and Localization in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2358-2364. doi: 10.11999/JEIT171207

一种新的无线传感器网络中异常节点检测定位算法

doi: 10.11999/JEIT171207
基金项目: 国家自然科学基金(61761011, 61371186),广西自然科学基金(2017GXNSFAA198173),桂林电子科技大学研究生教育创新计划(2018YJCX34)
详细信息
    作者简介:

    蒋俊正:男,1983 年生,教授,博士生导师,研究方向为图信号处理理论与算法、图滤波器组设计

    杨杰:男,1991 年生,硕士生,研究方向为图信号处理理论及应用

    欧阳缮:男,1960 年生,教授,博士生导师,研究方向为自适应信号处理、通信信号处理

    通讯作者:

    蒋俊正  jzjiang@guet.edu.cn

  • 中图分类号: TP393

Novel Method for Outlier Nodes Detection and Localization in Wireless Sensor Networks

Funds: The National Natural Science Foundation of China (61761011, 61371186), The Natural Science Foundation of Guangxi (2017GXNSFAA198173), The Innovation Project of GUET Graduate Education (2018YJCX34)
  • 摘要: 无线传感器网络中异常节点检测是确保网络数据准确性和可靠性的关键步骤。基于图信号处理理论,该文提出了一种新的无线传感器网络异常节点检测定位算法。新算法首先对网络建立图信号模型,然后基于节点域-图频域联合分析的方法,实现异常节点的检测和定位。具体而言,第1步是利用高通图滤波器提取网络信号的高频分量。第2步首先将网络划分为多个子图,然后筛选出子图输出信号的特定频率分量。第3步对筛选出的子图信号进行阈值判断从而定位疑似异常的子图中心节点。最后通过比较各子图的节点集合和疑似异常节点集合,检测并定位出网络中的异常节点。实验仿真表明,与已有的无线传感器网络中异常检测方法相比,新算法不仅有着较高的异常检测概率,而且异常节点的定位率也较高。
  • 图  1  异常检测流程图

    图  2  预处理前后信号在节点域-图频域的对比图

    图  3  环状图模型

    图  4  美国主要城市2003年某日平均气温网络图

    图  5  海平面部分测量站点某时刻的温度传感器网络图

    表  1  环状图模型的匹配筛选表

    ${V_i}$( ${V_i}$的中心节点为 ${v_i}$) 匹配筛选 筛选结果
    ${V_1} = \{ {v_1},{v_2},{v_3}\} $ ${V_1} \not\subset {V_{\rm A}}$ ${v_1}$不是异常节点
    ${V_2} = \{ {v_1},{v_2},{v_4}\} $ ${V_2} \subset {V_{\rm A}}$ ${v_2}$是异常节点
    ${V_3} = \{ {v_1},{v_3},{v_5}\} $ ${V_3} \not\subset {V_{\rm A}}$ ${v_3}$不是异常节点
    ${V_4} = \{ {v_2},{v_4},{v_6}\} $ ${V_4} \not\subset {V_{\rm A}}$ ${v_4}$不是异常节点
    ${V_5} = \{ {v_3},{v_5},{v_6}\} $ ${V_5} \not\subset {V_{\rm A}$ ${v_5}$不是异常节点
    ${V_6} = \{ {v_4},{v_5},{v_6}\} $ ${V_6} \not\subset {V_{\rm A}}$ ${v_6}$不是异常节点
    下载: 导出CSV

    表  2  美国主要城市温度网络中单个节点信号值异常增大情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤5)
    2 98.5 94.2 64.2
    3 95.4 89.7 69.3
    4 90.6 84.5 69.0
    下载: 导出CSV

    表  3  美国主要城市温度网络中单个节点信号值异常置零情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤5)
    2 99.7 98.3 67.0
    3 99.2 97.7 76.4
    4 98.4 96.9 80.4
    下载: 导出CSV

    表  4  美国主要城市温度网络中5个节点信号值异常增大情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤10)
    2 100.0 72.5 26.1
    3 100.0 58.3 24.6
    4 99.9 46.5 20.6
    下载: 导出CSV

    表  5  美国主要城市温度网络中5个节点信号值异常置零情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤10)
    2 100.0 92.5 32.8
    3 99.9 89.9 39.9
    4 99.9 86.9 42.6
    下载: 导出CSV

    表  6  海平面部分温度站点网络单节点异常增大情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤5)
    2 99.9 99.8 78.5
    3 99.6 99.4 85.5
    4 99.0 98.8 88.6
    下载: 导出CSV

    表  7  海平面部分温度站点网络单节点异常置零情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤5)
    2 99.8 99.7 81.9
    3 99.7 99.5 87.8
    4 99.5 99.3 90.6
    下载: 导出CSV

    表  8  海平面部分温度站点网络5个节点异常增大情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤10)
    2 100.0 98.7 36.7
    3 100.0 96.7 41.4
    4 99.9 92.9 42.6
    下载: 导出CSV

    表  9  海平面部分温度站点网络5个节点异常置零情况的检测指标(%)

    $\tau $ DR OPR OPR (OS≤10)
    2 100.0 99.6 36.7
    3 100.0 99.5 41.8
    4 100.0 99.3 44.8
    下载: 导出CSV
  • SHUKLA D S, PANDEY A C, and KULHARI A. Outlier detection: A survey on techniques of WSNs involving event and error based outliers[C]. 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), Ghaziabad, India, 2014: 113–116.
    XU Yang and LIU Fugui. Application of wireless sensor network in water quality monitoring[C]. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017: 368–371.
    DING Hui. Application of wireless sensor network in target detection and localization[J]. TELKOMNIKA Indonesian Journal of Electrical Engineerign, 2013, 11(10): 5734–5740 doi: 10.11591/telkomnika.v11i10.3400
    ZHU Yingli, SONG Jingjiang, and DONG Fuzhou. Applications of wireless sensor network in the agriculture environment mon-itoring[J]. Procedia Engineering, 2011, 16(1): 608–614 doi: 10.1016/j.proeng.2011.08.1131
    AKYILDIZ I F, SU Weilian, SANKAROSUBRAMANIAM Y, et al. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): 102–114 doi: 10.1109/MCOM.2002.1024422
    李鹏, 王建新, 曹建农. 无线传感器网络中基于压缩感知和GM(1, 1)的异常检测方案[J]. 电子与信息学报, 2015, 37(7): 1586–1590 doi: 10.11999/JEIT141219

    LI Peng, WANG Jianxin, and CAO Jiannong. Abnormal event detection scheme based on compressive sensing and GM(1,1) in wireless sensor networks[J]. Journal of Electronics&Information Technology, 2015, 37(7): 1586–1590 doi: 10.11999/JEIT141219
    SINGH K and UPADHYAYA S. Outlier detection: Applications and techniques[J]. International Journal of Computer Science Issues, 2012, 9(1): 307–323.
    ZHANG Yang, HAMM N A S, MERATNIA N, et al. Statistics-based outlier detection for wireless sensor networks[J]. International Journal of Geographical Information Science, 2012, 26(8): 1373–1392 doi: 10.1080/13658816.2012.654493
    ANDRADE A T C, MONTEZ C, MORAES R, et al. Outlier detection using k-means clustering and lightweight methods for Wireless Sensor Networks[C]. The 42nd Annual Conference of the IEEE Industrial Electrics Society (IECON 2016), Florence, Italy, 2016: 4683–4688.
    AYADI A, GHORBEL O, BENSALEH M S, et al. Performance of outlier detection techniques based classification in wireless sensor networks[C]. The 13th IEEE Wireless Communications and Mobile Computing Conference (IWCMC 2017), Valencia, Spain, 2017: 687–692.
    ABID A, KACHOURI A, and MAHFOUDHI A. Anomaly detection through outlier and neighborhood data in Wireless Sensor Networks[C]. The 2nd International Conference on Advanced Technologies for Signal and Image Processing, Monastir, Tunisia, 2016: 26–30.
    SANDRYHAILA A and MOURA J M F. Discrete signal processing on graphs: Frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3042–3054 doi: 10.1109/TSP.2014.2321121
    SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2012, 30(3): 83–98 doi: 10.1109/MSP.2012.2235192
    SANDRYHAILA A and MOURA J M F . Discrete signal processing on graphs: Graph filters[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 6163–6166.
    CHEN Siheng, VARMA R, SANDRYHAILA A, et al. Discrete signal processing on graphs: Sampling theory[J]. IEEE Transactions on Signal Processing, 2015, 63(24): 6510–6523 doi: 10.1109/TSP.2015.2469645
    SHUMAND I, RICAUD B, and VANDERGHEYNST P. A windowed graph Fourier transform[C]. 2012 IEEE Statistical Signal Processing Workshop (SSP 2012), Ann Arbor, USA, 2012: 133–136.
    HAMMOND D K, VANDERGHEYNST P, and GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied&Computational Harmonic Analysis, 2011, 30(2): 129–150 doi: 10.1016/j.acha.2010.04.005
    林丽. 两组独立数据差异性统计检验方法及应用的研究[D]. [硕士论文], 上海交通大学, 2007.

    LIN Li. Equivalence test method and application study for two independent data groups[D]. [Master dissertation], Shanghai Jiao Tong University, 2007.
    QIU Kai, MAO Xianghui, SHEN Xinyue, et al. Time-varying graph signal reconstruction[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 870–883 doi: 10.1109/JSTSP.2017.2726969
  • 加载中
图(5) / 表(9)
计量
  • 文章访问数:  1773
  • HTML全文浏览量:  702
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-21
  • 修回日期:  2018-05-18
  • 网络出版日期:  2018-07-30
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回