Design and Verification of Monolithic Integrated SAR System
-
摘要: 传统分立器件设计的微型合成孔径雷达(SAR)系统,在体积、功耗、重量、成本方面的发展瓶颈日益显现,且系统设计方案不利于单片集成,无法满足未来微型化和泛在化的无人平台对低成本微型载荷的需求。该文针对微型雷达载荷的迫切需求,开展高分辨率微型SAR系统研究,提出了全相参的调频连续波(FMCW)系统设计方案,解决了系统高脉间相位稳定性及高隔离度设计难题,并利用K波段高密度硅基芯片对该微型SAR方案进行技术验证,研制了原理样机并开展成像应用试验。该微型SAR系统斜距分辨率7.5 cm,系统总功耗仅为1.5 W,相比传统SAR系统在体积、重量、功耗等方面取得了显著的进步,同时为微型SAR系统的硅基单片集成奠定技术基础。Abstract: The micro Synthetic Aperture Radar (SAR) system based on the traditional GaAs and GaN devices is not conducive to the monolithic integration, and the development bottleneck of volume, power consumption, weight and cost is becoming increasingly apparent, which is impossible to meet the needs of the miniaturized and ubiquitous unmanned platforms in the future. A new scheme for the design of a fully coherent Frequency Modulated Continuous Wave (FMCW) SAR with high resolution is proposed. The design method of high pulse phase stability and high isolation is studied and realized. The prototype of micro SAR is developed based on silicon chip and experimentally demonstrated. The micro SAR operates at K band, producing a signal bandwidth of wider than 2 GHz, enabling a range resolution of 7.5 cm. The system has made remarkable progress in terms of size, weight, power consumption and lay technical foundation for the monolithic integration of micro SAR system in a silicon chip.
-
表 1 系统主要性能指标
参数名称 指标 工作频率 K 波段 带宽 ≥2 GHz 脉冲宽度 100 μs(可调) 分辨率 7.5 cm 作用距离 2~1000 m 表 2 典型微小型SAR系统核心指标对比
表 3 微型SAR原理样机体积、重量和功耗指标
参数名称 指标 体积 80 mm×80 mm×10 mm 重量 150 g 射频系统功耗 <1.5 W -
ESSEN H, STANKO S, SOMMER R, et al. Millimetre wave SAR for UAV operation[C]. IEEE Asia-Pacific Microwave Conference, Melbourne, Australia, 2011: 963–966. JOHANNES W, ESSEN H, STANKO S, et al. Miniaturized high resolution Synthetic Aperture Radar at 94 GHz for microlite aircraft or UAV[C]. IEEE Sensors 2011, Limerick, Ireland, 2011: 2022–2025. AGUASCA A, ACEVOHERRERA R, BROQUETAS A, et al. ARBRES: Light-Weight CW/FM SAR sensors for small UAVs[J]. Sensors, 2013, 13(3): 3204–3216 doi: 10.3390/s130303204 EDRICH M. Ultra-lightweight synthetic aperture radar based on a 35 GHz FMCW sensor concept and online raw data transmission[J]. IEE Proceedings-Radar,Sonar and Navigation, 2006, 153(2): 129–134 doi: 10.1049/ip-rsn:20045080 张明友, 汪学刚. 雷达系统[M]. 北京: 电子工业出版社, 2005: 36–44.ZHANG Mingyou and WANG Xuegang. Radar System[M]. Beijing: Publishing House of Electronics Industry, 2005: 36–44. STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings F:Radar and Signal Processing, 1992, 139(5): 343–350 doi: 10.1049/ip-f-2.1992.0048 STANKO S, JOHANNES W, SOMMER R, et al. SUMATRA—A miniaturized millimetre wave SAR[C]. 2013 14th International Radar Symposium (IRS), Dresden, German, 2013: 37–40. EDWARDS M, MADSEN D, STRINGHAM C, et al. MicroaSAR: A small, robust LFM-CW SAR for operation on UAVS and small aircraft[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008, 5: V514–V517. BROOKNER E. Developments and breakthroughs in radars and phased-arrays[C]. IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. 贝斯特, 著, 李永明, 译. 锁相环设计、仿真与应用[M]. 北京: 清华大学出版社, 2007: 29–33. ZHAO Zhiyong, LI Xiangyang, and CHANG Wenge. LFM-CW signal generator based on hybrid DDS-PLL structure[J]. Electronics Letters, 2013, 49(6): 391–393 doi: 10.1049/el.2012.2852 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349 doi: 10.12000/JR16089WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349 doi: 10.12000/JR16089 ZAUGG E, EDWARDS M, LONG D, et al. Developments in compact high-performance synthetic aperture radar systems for use on small Unmanned Aircraft[C]. Aerospace Conference, Montana, USA, 2011: 1–14. VAN DER GRAAF M W, OTTEN M P G, HUIZING A G, et al. AMBER: An X-band FMCW digital beam forming synthetic aperture radar for a tactical UAV[C]. IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2013: 165–170. EDRICH M and WEISS G. Second-generation Ka-band UAV SAR system[C]. European Radar Conference, Amsterdam, Holland, 2008: 479–482. 期刊类型引用(9)
1. 李宗凌,汪路元,蒋帅,吴雨航,张庆君. 超轻量网络的SAR图像舰船目标在轨提取. 遥感学报. 2021(03): 765-775 . 百度学术
2. 杜兰,王兆成,王燕,魏迪,李璐. 复杂场景下单通道SAR目标检测及鉴别研究进展综述. 雷达学报. 2020(01): 34-54 . 百度学术
3. 彭书娟,曲长文,李健伟. K近邻优化估计的SAR图像建模与目标检测算法. 控制与决策. 2020(09): 2199-2206 . 百度学术
4. 龙波. 相关序列小目标图像背景杂波度量方法仿真. 计算机仿真. 2020(09): 377-381 . 百度学术
5. 陈帅. 一种快速排序筛选SAR图像目标CFAR检测算法. 空军预警学院学报. 2019(04): 257-261 . 百度学术
6. 连婷婷. 民用航空区域危险目标自动识别方法研究. 环境技术. 2019(05): 160-164 . 百度学术
7. 李健,孙光才,邢孟道,章林. 基于卷积构型的单元平均CFAR目标检测算法. 电波科学学报. 2018(01): 56-63 . 百度学术
8. 李宗凌,汪路元,禹霁阳,郝梁,程博文. 星载SAR在轨成像及舰船目标检测方法. 航天器工程. 2018(06): 41-47 . 百度学术
9. 黄勇,刘芳. 基于模糊语义的高分辨率SAR图像汽车检测算法. 电子与信息学报. 2017(04): 968-972 . 本站查看
其他类型引用(6)
-