高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调Q因子小波变换的识别左右手运动想象脑电模式研究

陈万忠 王晓旭 张涛

陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究[J]. 电子与信息学报, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191
引用本文: 陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究[J]. 电子与信息学报, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191
Wanzhong CHEN, Xiaoxu WANG, Tao ZHANG. Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191
Citation: Wanzhong CHEN, Xiaoxu WANG, Tao ZHANG. Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191

基于可调Q因子小波变换的识别左右手运动想象脑电模式研究

doi: 10.11999/JEIT171191
基金项目: 中央高校基本科研专项资金(451170301193),吉林省科技发展计划自然基金项目(20150101191JC),吉林省产业技术研发项目(2016C025)
详细信息
    作者简介:

    陈万忠:男,1963年生,教授,研究方向为生物信息感知和人机交互

    王晓旭:女,1993年生,硕士生,研究方向为信号处理和模式识别

    张涛:男,1991年生,博士生,研究方向为信号处理和模式识别

    通讯作者:

    陈万忠 chenwz@jlu.edu.cn

  • 中图分类号: TN911.72

Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform

Funds: The Fundamental Research Foundation for the Central Universities (451170301193), The Natural Science Foundation in the Science and Technology Development of Jilin Province (20150101191JC), The Industrial Technology Research and Development Project in Jilin Province (2016C025)
  • 摘要:

    针对识别左右手运动想象脑电图信号(EEG)模式精度和互信息不高的问题,该文采用基于可调Q因子小波变换(TQWT)算法来处理脑电信号。首先,利用TQWT对脑电图信号进行分解;随后,提取子频带信号的小波系数能量、自回归模型(AR)系数以及分形维数;最后,利用线性判别分析(LDA)对提取的脑电特征进行识别。采用BCI2003和BCI2005竞赛数据对所提出的算法进行验证,4名受试者的最高识别率分别为88.11%, 89.33%, 77.13%和78.80%,最大互信息分别为0.95, 0.96, 0.43和0.45。实验结果表明,所提算法取得了高分类精度及互信息值,验证了其有效性。

  • 图  1  TQWT分解($J\,$=4)

    图  2  S2受试者3类特征的盒图

    图  3  特征组合后得到的识别率结果

    表  1  不同受试者采用单一特征和组合特征所得平均识别率及最高识别率

    受试者特征组合平均识别率(%)最高识别率(%)
    F181.7486.44
    F280.9585.66
    F367.9373.38
    S1F1+F286.1686.90
    F1+F384.7685.47
    F2+F385.0386.89
    F1+F2+F386.4588.11
    F184.2089.04
    F276.5281.06
    F355.8761.20
    S2F1+F287.8589.30
    F1+F387.6388.59
    F2+F380.2281.33
    F1+F2+F387.9689.33
    F166.0871.46
    F266.3068.93
    F355.1658.92
    S3F1+F275.6176.99
    F1+F371.4073.08
    F2+F371.4972.72
    F1+F2+F374.7077.13
    F173.2477.87
    F269.1074.60
    F352.3658.34
    S4F1+F277.6578.79
    F1+F376.1477.24
    F2+F374.0675.25
    F1+F2+F376.7378.80
    下载: 导出CSV

    表  2  本文方法与文献[5,6]得到的最高识别率

    受试者平均值(%)
    S1S2S3S4
    文献[5]90.7185.5373.1876.9581.59
    文献[6]90.7187.4278.8974.6382.91
    本文方法88.1189.3377.1378.8083.34
    下载: 导出CSV

    表  3  本文方法与BCI2003竞赛前3名获胜者、文献[5,6]方法最大互信息

    特征选择最大互信息
    (bit)
    最小错误识别率
    (%)
    BCI2003_1 st小波特征0.6110.71
    BCI2003_2 ndAR谱能量0.4615.71
    BCI2003_3 rdAAR参数模型0.4517.14
    文献[5]方法相空间特征0.639.29
    文献[6]方法小波特征0.819.29
    本文方法组合特征0.9511.89
    下载: 导出CSV

    表  4  不同受试者TQWT参数设置

    受试者QrJ
    S1132
    S2237
    S3132
    S4233
    下载: 导出CSV

    表  5  本文方法的时耗统计(s)

    TQWT过程能量特征AR系数特征分形维数特征分类总时间
    S10.00100.00120.00160.05590.01740.0771
    S20.00220.00100.00150.05360.01660.0749
    S30.00120.00100.00160.05330.01630.0734
    S40.00140.00150.00180.05470.01710.0765
    下载: 导出CSV
  • 佘青山, 陈希豪, 高发荣. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851

    SHE Qingshan, CHEN Xihao, and GAO Farong. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
    BALCONI M and MAZZA G. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band[J]. International Journal of Psychophysiology, 2009, 74(2): 158–165. doi: 10.1016/j.ijpsycho.2009.08.006
    吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314–318.

    LV Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics &Information Technology, 2009, 31(2): 314–318.
    陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209

    CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209
    CHEN Minyou, FANG Yonghui, and ZHENG Xufei. Phase space reconstruction for improving the classification of single trial EEG[J]. Biomedical Signal Processing & Control, 2014, 11(1): 10–16. doi: 10.1016/j.bspc.2014.02.002
    HAMID M and ZABIHOLLAH S M. Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization[J]. Biomedical Signal Processing & Control, 2017, 32: 69–75. doi: 10.1016/j.bspc.2016.10.015
    PATTNAIK S, DASH M, and SABUT S K. DWT-based feature extraction and classification for motor imaginary EEG signals[C]. International Conference on Systems in Medicine and Biology, Kharagpur, India, 2016: 186–201.
    徐佳琳, 左国坤. 基于互信息与主成分分析的运动想象脑电特征选择算法[J]. 生物医学工程学杂志, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036

    XU Jialin and ZUO Guokun. Motor imagery electroencephalogram feature selection algorithm based on mutual information and principal component analysis[J]. Journal of Biomedical Engineering, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036
    罗志增, 周镇定, 周瑛. 双树复小波特征在运动想象脑电识别中的应用[J]. 传感技术学报, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001

    LUO Zhizeng, ZHOU Zhending, and ZHOU Ying. The application of DTCWT feature in recognition of motor imagery[J]. Journal of Sensors and Actuators, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001
    周瑛. 虚拟场景下运动想象脑电信号识别研究[D]. [硕士论文], 杭州电子科技大学, 2013.

    ZHOU Ying. The research of motor imagery recognition in virtual reality[D]. [Master dissertation], Hangzhou Dianzi University, 2013.
    AL-QAZZAZ N K, HAMID B M A S, AHMAD S A, et al. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks[J]. Sensors, 2017, 17(6): 1–25. doi: 10.3390/s17061326
    GHORBANIAN P, DEVILBISS D M, VERMA A, et al. Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform[J]. Annals of Biomedical Engineering, 2013, 41(6): 1243–1257. doi: 10.1007/s10439-013-0795-5
    HASSAN A R and BHUIYAN M I H. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting[J]. Neurocomputing, 2017, 219: 76–87. doi: 10.1016/j.neucom.2016.09.011
    BENJAMIN B. BCI Competition II[OL]. http://www.bbci.de/competition/ii/, 2003.
    BENJAMIN B. BCI Competition III[OL]. http://www.bbci.de/competition/iii/, 2005.
    VIDAURRE C, SCHLOGL A, CABEZA R, et al. A fully on-line adaptive BCI[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6): 1214–1219. doi: 10.1109/TBME.2006.873542
    BAYRAM I and SELESNICK I W. Frequency-domain design of overcomplete rational-dilation wavelet transforms[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 2957–2972. doi: 10.1109/TSP.2009.2020756
    IVAN S. Tunable Q-factor wavelet transform[OL]. http://eeweb.poly.edu/iselesni/TQWT/index.html, 2016.
    SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560–3575. doi: 10.1109/TSP.2011.2143711
    AMIN H U, MALIK A S, AHMAD R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1): 139–149. doi: 10.1007/s13246-015-0333-x
    LAWHERN V, HAIRSTON W D, MCDOWELL K, et al. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models[J]. Journal of Neuroscience Methods, 2012, 208(2): 181–189. doi: 10.1016/j.jneumeth.2012.05.017
    PHOTHISONOTHAI M and NAKAGAWA M. EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface[J]. IEICE Transactions on Information and Systems, 2008, 91(1): 44–53. doi: 10.1093/ietisy/e91-d.1.44
    訾艳阳, 胥永刚, 何正嘉. 离散振动信号分形盒维数的改进算法和应用[J]. 机械科学与技术, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021

    ZI Yanyang, XU Yonggang, and HE Zhengjia. Fractal box dimension of discrete vibration signals[J]. Mechanical Science and Technology for Aerospace Engineering, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021
    GUPTA S and SAINI H. EEG features extraction using PCA plus LDA approach based on L1-norm for motor imaginary classification[C]. IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 2015: 1–5.
    SCHLOGL A, KEINRATH C, SCHERER R, et al. Information transfer of an EEG-based brain computer interface[C]. International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003: 641–644.
    FELE-ZORZ G, KAVSEK G, NOVAK-ANTOLIC Z, et al. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups[J]. Medical & Biological Engineering & Computing, 2008, 46(9): 911–922. doi: 10.1007/s11517-008-0350-y
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  2578
  • HTML全文浏览量:  779
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-12-06
  • 网络出版日期:  2018-12-21
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回