高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

目标个数未知时双基地MIMO雷达多目标角度跟踪算法研究

张正言 张剑云 周青松

张正言, 张剑云, 周青松. 目标个数未知时双基地MIMO雷达多目标角度跟踪算法研究[J]. 电子与信息学报, 2018, 40(10): 2491-2497. doi: 10.11999/JEIT171174
引用本文: 张正言, 张剑云, 周青松. 目标个数未知时双基地MIMO雷达多目标角度跟踪算法研究[J]. 电子与信息学报, 2018, 40(10): 2491-2497. doi: 10.11999/JEIT171174
Zhengyan ZHANG, Jianyun ZHANG, Qingsong ZHOU. Study on Multi-target Angle Tracking Algorithm of Bistatic MIMO Radar with Unknown Target Number[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2491-2497. doi: 10.11999/JEIT171174
Citation: Zhengyan ZHANG, Jianyun ZHANG, Qingsong ZHOU. Study on Multi-target Angle Tracking Algorithm of Bistatic MIMO Radar with Unknown Target Number[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2491-2497. doi: 10.11999/JEIT171174

目标个数未知时双基地MIMO雷达多目标角度跟踪算法研究

doi: 10.11999/JEIT171174
基金项目: 国家自然科学基金(61671453, 61201379),安徽省自然科学基金(1608085MF123)
详细信息
    作者简介:

    张正言:男,1991年生,博士生,研究方向为阵列信号处理、MIMO雷达信号处理

    张剑云:男,1963年生,教授,博士生导师,主要研究方向为雷达及目标环境模拟、雷达信号处理、高速信号处理

    周青松:男,1983年生,博士,讲师,主要研究方向为阵列信号处理和雷达信号处理

    通讯作者:

    张正言  zzyaisj@163.com

  • 中图分类号: TN958

Study on Multi-target Angle Tracking Algorithm of Bistatic MIMO Radar with Unknown Target Number

Funds: The National Natural Science Foundation of China (61671453, 61201379), The Natural Science Foundation of Anhui Province (1608085MF123)
  • 摘要: 针对目标个数未知时双基地MIMO雷达角度跟踪问题,该文提出一种基于改进自适应非对称联合对角化(AAJD)的目标个数与角度联合跟踪算法。AAJD算法中无法得到特征值变量,因此改进AAJD算法引入主成分顺序估计思想,循环求出特征值,然后运用改进信息论准则估计出目标个数。其次提出目标个数防抖动算法,提高了稳健性。最后改进了ESPRIT算法,完成了目标参数的自动配对和关联。仿真结果表明改进AAJD算法能够成功跟踪目标个数和角度,验证了理论分析的有效性。
  • 图  1  双基地MIMO雷达配置结构

    图  2  静止目标个数跟踪结果

    图  3  目标定位结果

    图  4  运动目标个数跟踪结果

    图  5  目标跟踪结果

    图  6  算法的跟踪性能

    表  1  改进AAJD算法流程

     初始值: ${{P}}\left( 0 \right) = {{{I}}_{P \times P}}$, $0 < \beta \le 1$, $K$为稳定脉冲数
     输入: ${{y}}\left( t \right)$
     输出: $φ \left( t \right),{θ} \left( t \right)$
      For $t = 1,2, ·\!·\!· ,T\,$
     步骤 1  for $i = 1,2, ·\!·\!· ,L$
           ${d_i}\left( t \right) = {{W}}\!_i\,^{ - 1}\left( {t - 1} \right){{{y}}_i}\left( t \right)$
           ${g_i}\left( t \right)\; = \beta {g_i}\left( {t - 1} \right) + {\left| {{d_i}\left( t \right)} \right|^2}$
           ${Q_i}\left( t \right) = {{d_i^{*} \left( t \right)} / {{g_i}\left( t \right)}}$
           ${\eta _i}\left( t \right) = {{{{\left| {{d_i}\left( t \right)} \right|}^2}} \bigl/ {{g_i}\left( t \right)}}$
           ${{{e}}_i}\left( t \right) = {{{y}}_i}\left( t \right) - {{{W}}_i}\left( {t - 1} \right){d_i}\left( t \right)$
           ${\widehat{{W}}_i}\left( t \right) = {{{W}}_i}\left( {t - 1} \right) + {1 / {\left( {\beta + {\eta _i}\left( t \right)} \right)}}{{{e}}_i}\left( t \right)Q_i^{}\left( t \right)$
           ${{{y}}_{i + 1}}\left( t \right) = {{{y}}_i}\left( t \right) - {\widehat{{W}}}_i^{ - 1}\left( t \right){d_i}\left( t \right)$
          end
       if $t < K$
        对 ${{g}}\!\left( t \right)$进行降序排列,并取最大的 $P$个特征值对应的矢量 构成 ${{W}}\left( t \right)$
       else
        取前 $P$个特征矢量构成 ${{W}}\!\left( t \right)$
       end
     步骤 2
       if $t = = 1$
         ${{{Ψ}}_r} = {{W}}\!_{r1}\,\!\!\!^{- 1}{{{W}}\!_{r2}}$, 对 ${{{Ψ}}_r}$进行特征值分解:
         ${{{Ψ}}_r} = {{T}}{{{Φ}}_r}{{T}}_{}^{ - 1}$,取 ${{{Φ}}_r}$的对角线元素组成 ${{{ω }}_r}$
         ${{{Φ}}_t} = {{{T}}^{ - 1}}{{W}}\!_{t1}\,\!\!\!^{ - 1}{{{W}}\!_{t2}}{{T}}$,取 ${{{Φ}}_t}$的对角线元素组成 ${{{ω }}_t}$
       else
         ${{{Ψ}}_r} = {{W}}\!_{r1}\,\!\!\!^{ - 1}{{{W}}\!_{r2}}$, ${{{Ψ }}_t} = {{W}}\!_{t1}\,^{ - 1}{{{W}}\!_{t2}}$,取 ${{{Ψ}}_r}$和 ${{{Ψ }}_t}$的对角线元 素组成 ${{{ω }}_r}$和 ${{{ω }}_t}$
       end
       利用 ${\theta _p} = \arcsin \left\{ {{\rm{angle}}\left[ {{{ω}_r}\left( p \right)} \right]/{π} } \right\},$
    ${\varphi _p} = \arcsin \left\{ {{\rm angle}\left[ {{ω}_r \left( p \right)} \right]/{π} } \right\}$,得到了 ${θ} \left( t \right),φ \left( t \right)$
       根据 ${{W}}\!\!\left( t \right) \!=\! \left[ {{{{a}}_r}\left( {{\theta _1}} \right) \otimes {{{a}}_t}\left( {{\varphi _1}} \right), ·\!·\!·, {{{a}}_r}\left( {{\theta _P}} \right) \otimes {{{a}}_t}\left( {{\varphi _P}} \right)} \right]$更新 $\widehat{{W}}\!\left( t \right)$
      End
    下载: 导出CSV

    表  2  目标个数跟踪过程

     输入: ${{y}}\left( t \right)$, ${{W}}\left( t \right)$, $P\left( {t - 1} \right)$,稳定脉冲数 $K$
     输出: $P\left( t \right)$
     For $i = 1,2, ·\!·\!· ,L$
        ${d_i}\left( t \right) = {{W}}_i^{ - 1}\left( t \right){{{y}}_i}\left( t \right)$
        ${g_i}\left( t \right)\; = \beta {g_i}\left( {t - 1} \right) + {\left| {{d_i}\left( t \right)} \right|^2}$
        ${{{y}}_{i + 1}}\left( t \right) = {{{y}}_i}\left( t \right) - {\widehat{{W}}}_i^{ - 1}\left( t \right){d_i}\left( t \right)$
     End
     If $t < K$, $K$为稳定脉冲数
        ${{g}}\!\left( t \right) = {\left[ {{g_1}\!\left( t \right),{g_2}\left( t \right), ·\!·\!· {g_L}\!\left( t \right)} \right]^{\rm{T}}}$
     Else
       取 ${{g}}\left( t \right) = \left[ {g_1}\!\left( t \right),{g_2}\!\left( t \right), ·\!·\!· ,{g_{P\left( {t - 1} \right)}}\left( t \right),{g_{P\left( {t - 1} \right) + 1}}\left( t \right),\right. $
    $\left.{g_N}\left( {t - 1} \right), ·\!·\!· ,{g_N}\left( {t - 1} \right) \right]^{\rm{T}}$
     End
     根据AIC准则估计出 $t$时刻的目标个数 $P\left( t \right)$,注意当 $t > K$只需求 出前 $P\left( {t - 1} \right) + 1$个AIC值,即可得到全局最小值。
    下载: 导出CSV
  • FISHER E, HAIMOVICH A, BLUM R S, et al. Spatial diversity in radar-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823–838 doi: 10.1109/TSP.2005.862913
    徐旭宇, 李小波, 梁浩, 等. 基于二次虚拟孔径扩展的双基地MIMO雷达相干分布式目标中心角度估计[J]. 电子与信息学报, 2014, 36(4): 953–959 doi: 10.3724/SP.J.1146.2013.00955

    XU Xuyu, LI Xiaobo, LIANG Hao, et al. Central angle estimation of coherently distributed sources for bistatic MIMO radar on second virtual array aperture extension[J]. Journal of Electronics&Information Technology, 2014, 36(4): 953–959 doi: 10.3724/SP.J.1146.2013.00955
    樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO雷达目标参数估计[J]. 电子与信息学报, 2015, 37(4): 933–938 doi: 10.11999/JEIT140826

    FAN Jinyu, GU Hong, SU Weimin, et al. Co-prime MIMO radar multi-parameter estimation based on tensor decomposition[J]. Journal of Electronics&Information Technology, 2015, 37(4): 933–938 doi: 10.11999/JEIT140826
    TANG Bo, TANG Jun, and PENG Yingning. MIMO radar waveform design in colored noise based on information theory[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4684–4697 doi: 10.1109/TSP.2010.2050885
    梁浩, 崔琛, 余剑. 基于ESPRIT算法的十字型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2016, 38(1): 80–89 doi: 10.11999/JEIT150402

    LIANG Hao, CUI Chen, and YU Jian. Reduced-dimensional DOA estimation based on ESPRIT algorithm in monostatic MIMO radar with cross array[J]. Journal of Electronics&Information Technology, 2016, 38(1): 80–89 doi: 10.11999/JEIT150402
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722 doi: 10.1109/TSP.2016.2569431
    刘晓莉, 廖桂生. 基于MUSIC和ESPRIT的双基地MIMO雷达角度估计算法[J]. 电子与信息学报, 2010, 32(9): 2179–2183 doi: 10.3724/SP.J.1146.2009.01459

    LIU Xiaoli and LIAO Guisheng. Combined MUSIC with ESPRIT algorithm for angle estimation in bistatic MIMO radar system[J]. Journal of Electronics&Information Technology, 2010, 32(9): 2179–2183 doi: 10.3724/SP.J.1146.2009.01459
    ZHENG Zhidong and ZHANG Jianyun. Fast method for multi-target localization in bistatic MIMO radar[J]. IEEE Electronics Letters, 2011, 47(2): 138–139 doi: 10.1049/el.2010.2577
    梁浩, 崔琛, 余剑. 十字型阵列MIMO雷达高精度二维DOA估计[J]. 雷达学报, 2016, 5(3): 254–264 doi: 10.12000/JR16016

    LIANG Hao, CUI Chen, and YU Jian. Two-dimensional DOA estimation with high accuracy for MIMO radar using cross array[J]. Journal of Radar, 2016, 5(3): 254–264 doi: 10.12000/JR16016
    WU Hailang, ZHANG Xiaofei, FENG Gaopeng, et al. DOA tracking in monostatic MIMO radar using PARAFAC-RLST algorithm[C]. The 3rd International Conference on Information Science and Engineering (ICISE’2011), Yangzhou, China, 2011: 958–961.
    ZHANG Xiaofei, LI Jianfeng, FENG Gaopeng, et al. Kalman-PASTd based DOA tracking algorithm for monostatic MIMO radar[C]. International Conference on Information, Services and Management Engineering, Beijing, 2011: 220–224.
    YU Huaxin, ZHANG Xiaofei, CHEN Xueqiang, et al. Computationally efficient DOA tracking algorithm in monostatic MIMO radar with automatic association[J]. International Journal of Antennas and Propagation, 2014(12): 1–10 doi: 10.1155/2014/501478
    李丽, 邱天爽. 双基地MIMO雷达目标参数估计及动态跟踪新算法[J]. 信号处理, 2014, 30(2): 155–162

    LI Li and QIU Tianshang. A novel algorithm for target parameter estimation and dynamic tracking in bistatic MIMO radar system[J]. Journal of Signal Processing, 2014, 30(2): 155–162
    张正言, 李小波, 徐旭宇, 等. 双基地MIMO雷达角度快速跟踪算法[J]. 信号处理, 2016, 32(6): 701–706 doi: 10.16798/j.issn.1003-0530.2016.06.009

    ZHANG Zhengyan, LI Xiaobo, XU Xuyu, et al. Target angle rapid algorithm for bistatic MIMO radar[J]. Journal of Signal Processing, 2016, 32(6): 701–706 doi: 10.16798/j.issn.1003-0530.2016.06.009
    WU Hailang and ZHANG Xiaofei. DOD and DOA tracking for bistatic MIMO radar using PASTd without additional angles pairing[C]. IEEE Fifth International Conference on Advanced Computational Intelligence, Nanjing, 2012: 1132–1136. doi: 10.1109/ICACI.2012.6463350.
    ZHANG Weitao, LOU Shuntian, LI Xiaojun, et al. Tracking multiple target in MIMO radar Via adaptive asymmetric joint diagonalization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2880–2893 doi: 10.1109/TSP.2016.2535249
    YANG J and KAVEH M. Adaptive eigensubspace algorithms for direction or frequency estimation and tracking[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1988, 36(2): 241–251 doi: 10.1109/29.1516
    BANNOUR S and AZIMI-SADJADI M R. An adaptive approach for optimal data reduction using recursive least squares learning method[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, 1992: 297–300. doi: 10.1109/ICASSP.1992.226061.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1633
  • HTML全文浏览量:  521
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-14
  • 修回日期:  2018-06-20
  • 网络出版日期:  2018-07-30
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回