高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短脉冲非相参雷达的补偿相参处理方法研究

汪海波 黄文华 姜悦

汪海波, 黄文华, 姜悦. 短脉冲非相参雷达的补偿相参处理方法研究[J]. 电子与信息学报, 2018, 40(8): 1823-1828. doi: 10.11999/JEIT171147
引用本文: 汪海波, 黄文华, 姜悦. 短脉冲非相参雷达的补偿相参处理方法研究[J]. 电子与信息学报, 2018, 40(8): 1823-1828. doi: 10.11999/JEIT171147
Haibo WANG, Wenhua HUANG, Yue JIANG. Compensative Coherent Processing Algorithm for Short Pulse Non-coherent Radar[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1823-1828. doi: 10.11999/JEIT171147
Citation: Haibo WANG, Wenhua HUANG, Yue JIANG. Compensative Coherent Processing Algorithm for Short Pulse Non-coherent Radar[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1823-1828. doi: 10.11999/JEIT171147

短脉冲非相参雷达的补偿相参处理方法研究

doi: 10.11999/JEIT171147
详细信息
    作者简介:

    汪海波:男,1987年生,工程师,研究方向为高功率微波技术和雷达信号处理

    黄文华:男,1968年生,研究员,博士生导师,研究方向为高功率微波技术

    姜悦:女,1989年生,工程师,研究方向为高功率微波技术、特征提取与目标识别

    通讯作者:

    汪海波  wanghaibo@nint.ac.cn

  • 中图分类号: TN951

Compensative Coherent Processing Algorithm for Short Pulse Non-coherent Radar

  • 摘要: 为了对短脉冲非相参雷达信号进行相参处理,该文根据其信号特征,建立了参数化信号模型。分析了信号非相参因素,提出了以匹配滤波和参数估计为基础的补偿相参处理算法。通过理论推导证明了对点目标进行补偿相参处理的可行性。并对距离扩展目标进行了理论分析,推导出其获得近似的补偿相参增益所需要满足的条件。并通过仿真验证了理论分析结果。
  • 图  1  短脉冲非相参雷达系统组成

    图  2  补偿相参方法

    图  3  频率估计的广义最大似然方法

    图  4  点目标补偿前的信号和补偿相参积累信号波形幅度

    图  5  时域物理光学构建计算目标回波幅度

    图  6  飞机补偿前的信号和补偿相参积累信号波形幅度

    表  1  补偿相参积累的信噪比增益与理论值比较

    M 理论值(dB) 仿真估计值(dB)
    点目标 距离扩展目标
    2 3.01 3.13 2.06
    3 4.77 4.52 4.08
    5 6.99 6.61 5.36
    10 10.00 10.11 9.85
    20 13.01 12.92 12.27
    50 16.99 17.00 16.39
    100 20.00 19.95 19.49
    下载: 导出CSV
  • 胡银福, 冯进军.用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4):350–360. DOI: 10.12000/JR16078

    HU Yinfu and FENG Jinjun. New vacuum electronic devices for radar[J]. Journal of Radar, 2016, 5(4):350–360. DOI: 10.12000/JR16078
    钱宝良.国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015, 4(2):2–7. DOI: 10.16540/j.cnki.cn11-2485/tn.2015.02.001

    QIAN Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015, 4(2): 2–7. DOI: 10.16540/j.cnki.cn11-2485/tn.2015.02.001
    XIAO Renzhen, ZHANG Zhiqiang, LIANG Tiezhu, et al. A relativistic backward wave oscillator for directly generating circularly polarized TE11 mode[J]. Physics of Plasmas, 2016, 23(3):554–562.DOI: 10.1063/1.4944915
    BLYAKHMAN A B, DAVID C, ROGER W H, et al. Nanosecond giga-watt radar: Indication of small targets moving among heavy clutter[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 61–64. doi: 10.1109/RADAR.2007.374191.
    BLYAKHMAN A B, CLUNIE D, MESIATS G, et al. Analysis of nanosecond gigawatt radar[C]. Quasi-Optical Control of Intense Microwave Transmission, Netherlands, 2005: 283–296. doi: 10.1007/1-4020-3638-8_21.
    RYSKIN N M and TITOV V N. Phase locking and mode switching in a backward-wave oscillator with reflections[J]. IEEE Transactions on Plasma Science, 2016, 44(8):1270–1275.DOI: 10.1109/TPS.2016.2517002
    SONG Wei, ZHANG Xiaowei, CHEN Changhua, et al. Enhancing frequency-tuning ability of an improved relativistic backward-wave oscillator[J]. IEEE Transactions on Electron Devices, 201360(1): 494–497. DOI: 10.1109/TED.2012.2230400
    王乐, 周子超, 李春化. 提高非相参雷达发射信号相干性的研究[J]. 火控雷达技术, 2012, 41(2): 30–33

    WANG Le, ZHOU Zhichao, and LI Chunhua. Study on improving coherence of non-coherent radar transmitting signal[J]. Fire Control Radar Technology, 2012,41(2):30–33
    Trapp R L. Improved coherent-on-receive radar processing with dynamic transversal filters[C]. Proceedings of the IEEE International Radar Conferenc, London, 1982: 505–508.
    丁建江, 张贤达. 接收相干处理算法的分析与评述[J]. 系统工程与电子技术, 2002, 24(11): 25–28

    DING Jianjiang and ZHANG Xianda. Analysis and discussions on the coherent-on-receive processing arithmetic[J]. Systems Engineering and Electronics , 2002, 24(11):25–28
    ZHOU Ruixue, XIA Guifen, ZHAO Yue , et al. Coherent signal processing method for frequency-agile radar[C]. IEEE International Conference on Electronic Measurement & Instruments, Qingdao, China, 2015: 431–434. doi: 10.1109/ICEMI.2015.7494227.
    GAO Jing, Li F, WANG Chao , et al. ISAR motion compensation based on matching pursuit with Chebyshev polynomials under low SNR[C]. IEEE International Conference on Signal Processing, Communications and Computing, Hong Kong, China, 2016: 1–5. doi: 10.1109/ICSPCC.2016.7753674.
    CHEN Yichang, LI Gang, Zhang Qingjun, et al. Motion Compensation for airborne SAR via parametric sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):551–562. DOI: 10.1109/TGRS.2016.2611522
    田超, 文树梁.基于非均匀FFT的长时间相参积累算法[J].电子与信息学报, 2014, 36(6):1374–1380 DOI: 10.3724/SP.J.1146.2013.01264

    TIAN Chao and WEN Shuliang. A long-term coherent integration algorithm based on non-uniform fast Fourier transform[J]. Journal of Electronics & Information Technology , 2014, 36(6): 1374–1380 DOI: 10.3724/SP.J.1146.2013.01264
    ZOU Yongqiang, GAO Xunzhang, and LI Xiang. A sparse representation and GTD model parameter estimation based multiband radar signal coherent compensation method[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059305.
    黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2010: 229–283.

    HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Character[M]. Bejing: Publishing House of Electronics Industry, 2010: 229–283.
    GUAN Yin, GONG, Shuxi, ZHANG Shuai, et al. Improved time-domain physical optics for transient scattering analysis of electrically large conducting targets[J]. IET Microwaves, Antennas and Propagation , 2011, 5(5):625–629. DOI: 10.1049/iet-map.2010.0277
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2126
  • HTML全文浏览量:  735
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-05-15
  • 网络出版日期:  2018-06-07
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回