高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可靠性的5G网络切片在线映射算法

唐伦 赵国繁 杨恒 赵培培 陈前斌

唐伦, 赵国繁, 杨恒, 赵培培, 陈前斌. 基于可靠性的5G网络切片在线映射算法[J]. 电子与信息学报, 2018, 40(8): 1956-1962. doi: 10.11999/JEIT171119
引用本文: 唐伦, 赵国繁, 杨恒, 赵培培, 陈前斌. 基于可靠性的5G网络切片在线映射算法[J]. 电子与信息学报, 2018, 40(8): 1956-1962. doi: 10.11999/JEIT171119
Lun TANG, Guofan ZHAO, Heng YANG, Peipei ZHAO, Qianbin CHEN. Online Mapping Algorithm Based on Reliability for 5G Network Slicing[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1956-1962. doi: 10.11999/JEIT171119
Citation: Lun TANG, Guofan ZHAO, Heng YANG, Peipei ZHAO, Qianbin CHEN. Online Mapping Algorithm Based on Reliability for 5G Network Slicing[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1956-1962. doi: 10.11999/JEIT171119

基于可靠性的5G网络切片在线映射算法

doi: 10.11999/JEIT171119
基金项目: 国家自然科学基金(61571073),重庆市科委重点产业共性关键技术创新专项(cstc2015zdcy-ztzx40008)
详细信息
    作者简介:

    唐伦:男,1973年生,教授,博士,研究方向为新一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    赵国繁:女,1993年生,硕士生,研究方向为5G网络切片中的资源分配、可靠性

    杨恒:男,1993年生,硕士生,研究方向5G网络切片、虚拟资源分配

    赵培培:女,1993年生,硕士生,研究方向为5G网络切片映射算法

    陈前斌:男,1967年生,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    唐伦  tangl@cqupt.edu.cn

  • 中图分类号: TN929.5

Online Mapping Algorithm Based on Reliability for 5G Network Slicing

Funds: The National Natural Science Foundation of China (61571073), The Chongqing Science and Technology Commission Key Industry Common Technology Innovation Special Project (cstc2015zdcy-ztzx40008)
  • 摘要: 为了满足业务多样性对5G网络切片带来差异化需求的同时保证切片的可靠性,实现网络资源的优化配置。该文针对5G网络切片的动态映射、轻量级可靠映射问题,提出对计算资源、链路资源和RRU频谱资源联合分配方案。首先,该方案建立面向可靠性约束的多目标资源分配模型,引入李雅普诺夫优化模型,在保证队列稳定同时优化资源分配。其次,提出了基于队列稳定性的虚拟节点映射算法和基于可靠性的虚拟链路映射算法。最后,将时间离散为一系列连续的时间窗,利用时间窗动态处理到达的网络切片请求,实现在线的网络切片映射算法。仿真结果表明,该算法提高了资源利用率,并且保证网络可靠性。
  • 图  1  C-RAN场景网络切片

    图  2  虚拟链路两点子图映射

    图  3  基于网络切片的队列模型

    图  4  时间窗在线网络切片映射机制

    图  5  不同服务速率下对网络平均队长的影响比较

    图  6  不同控制参数V下服务速率对网络队长的影响

    图  7  两种算法节点平均吞吐量对比

    图  8  两种算法不同控制参数V下可靠性对比

    表  1  基于队列稳定性的虚拟节点映射

    算法1 基于队列稳定性的虚拟节点映射
    (1) 虚拟切片 $\small G_v^g = \left( {N_v^g,E_v^g} \right)$
    (2) 生成物理网络 $\small {G_s} = \left( {N_s,E_s} \right)$
    (3) for all $\small n \in N_v^g$, do
    (4) if $\small {C_n} > {C_i},\forall i \in {N_s}$ then
    (5)  拒绝 $\small G_v^g,{y_g} = 0$
    (6)  return
    (7)  end if
    (8)  for all $\small i \in {N_s}|{C_n} \ge {C_i}$ do
    (9) $\small {Y_i} \leftarrow \left\{ {V{p_g} - {Z_g}\left( t \right){w_{g,i}}{Q_i}\left( t \right)} \right\} + {Q_i}\left( t \right){\mu _i}\left( t \right)$
    (10)  $\small \varphi \left( i \right) \leftarrow 0,{y_g} \leftarrow 1$
    (11)  $\small {w_{g,i}} = {{{C_n}y_n^i} \Bigr/ {{P_g}}} = {{{C_{{s_{kg}}}}y_{{s_{kg}}}^i} \Bigr/ {{P_g}}} = {{{C_{{d_{kg}}}}y_{{d_{kg}}}^j} \Bigr/ {{P_g}}}\left( {i \ne j} \right)$
    (12) end for
    (13) Let $\small {i_{\max }} = \mathop {\arg \max }\limits_{i \in {N_s}} \left\{ {{Y_i}\left| {\varphi \left( i \right) = 0} \right.} \right\}$
    (14) set $\small y_g^{{i_{\max }}} \leftarrow 1$, $\small \varphi \left( {{i_{\max }}} \right) \leftarrow 1$, $\small {Y_g} \leftarrow {i_{\max }}$
    (15) end for
    (16) 基于 $\small {Y_g}$利用VLM-R(基于可靠性的链路映射算法)映射虚拟链路
    (17) VLM-R成功映射 then
    (18) 更新物理网络剩余的资源容量
    (19) else
    (20) 拒绝 $\small G_v^g,{y_g} = 0$
    (21) end if
    下载: 导出CSV

    表  2  基于切片可靠性的虚拟链路映射

    算法2 基于切片可靠性的虚拟链路映射
    Input: Request $\small G_v^g = \left( {N_v^g,E_v^g,{T_g},{b_g}} \right)$, $\small {G_s} = \left( {{N_s},{E_s},{\lambda _s}} \right)$, $\small {Y_g}$,
    $\small {e_{kg}} = \left( {{\rm{src}}{{\scriptsize{\_} }}{\rm{id}},{\rm{dst}}{\scriptsize{\_}}{\rm{id}}} \right)$
    For $\small {e_{kg}} \in E_v^g$
    Begin:
    (1) 将每个切片中的虚拟链路按照k递增的顺序排列
    (2) for each $\small {e_{kg}} \in E_v^g$ do
    (3) 由算法1得到的 $\small {Y_g}$为 $\small {e_{kg}}$匹配相对应的物理节点 $\small {n_s}$与 $\small {n_t}$
    (4) set $\small {\rm{src}}{\scriptsize{\_}}{\rm{id}} \leftarrow {n_s},{\rm{dst}}{\scriptsize{\_}}{\rm{id}} \leftarrow {n_t}$
    (5) 计算所有从 $\small {\rm{src}}{\scriptsize{\_}}{\rm{id}}$到 $\small {\rm{dst}}{\scriptsize{\_}}{\rm{id}}$的子路径 $\small {P_m} \in \Omega \left( {{e_{kg}}} \right)$
    (6) end for
    (7) for each 子路径 $\small {P_m} \in \Omega \left( {{e_{kg}}} \right)$ do
    (8) if $\small \left\{ {{b_{ij}} < {b_k}\left| {{l_{ij}} \in {P_m}} \right.} \right\}$ then
    (9) refuse $\small {e_{kg}}$
    (10) else $\small x_{ij}^{kg} = 1,\forall {l_{ij}} \in {P_m}$
    (11) 计算此路径 $\small {P_m}$的失效率 $\small \sum\nolimits_{i,j} \!\! {x_{ij}^{kg}} {\lambda _{ij}}{T_g}$作为它的权值
    (12) end if
    (13) for all $\small {p_k}$ do
    (14)  $\small {\lambda _k} \leftarrow \sum\nolimits_{i,j} {x_{ij}^{kg}} {\lambda _{ij}}{T_g}$
    (15) end for
    (16) let $\small {p_{\min }} = \mathop {\arg \min }\limits_{{p_m} \in \Omega \left( {{e_{kg}}} \right)} \left\{ {{\lambda _k}} \right\}$
    (17) set $\small X_{ij}^{kg} \leftarrow x_{ij}^{kg}$
    (18) end for
    下载: 导出CSV

    表  3  基于时间窗的在线网络切片映射

    算法3 基于时间窗的在线网络切片映射
    (1) 初始化时间窗为空集 $\small {W_1} \leftarrow \left\{ {} \right\}$
    (2) loop
    (3)   $\small {W_2} \leftarrow {W_1}$
    (4)   $\small {W_1} \leftarrow \left\{ {} \right\}$
    (5)  repeat
    (6) 添加新的虚拟切片请求 $\small G_v^g = \left( {N_v^g,E_v^g,{T_g}} \right)$到 $\small {W_2}$
    (7) until 当前窗口 $\small {W_2}$过期
    (8) 根据切片生命周期对 $\small {W_2}$内的切片进行排序,时间周期越短越优 先处理
    (9) 将当前的时间 $\small {T_2} \leftarrow {\rm{Current}}\;{\rm{time}}$
    (10)  for all $\small G_v^g \in {W_2}$ do
    (11) if $\small {t_w}\left( {G_v^g} \right)$在 $\small {T_2}$之前已经过期 then
    (12) Reject $\small G_v^g$
    (13)  else
    (14) 映射 $\small G_v^g$用算法1
    (15) if 算法1映射 $\small G_v^g$失败 then
    (16) 将 $\small G_v^g$添加到 $\small {W_1}$
    (17)   end if
    (18)  end if
    (19) end for
    (20) end loop
    下载: 导出CSV
  • CAO Hantong, ZHU Yongxu, ZHENG Gan, et al. A novel optimal mapping algorithm with less computational complexity for virtual network embedding[J]. IEEE Transactions on Network and Service Management, 2018, 15 (1): 356-371. DOI: 10.1109/TNSM.2017.2778106.
    ZHOU Zibo, CHANG Xiaolin, YANG Yang, et al. Resource-aware virtual network parallel embedding based on genetic algorithm[C]. 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies, Guangzhou, 2016: 81–86.
    ZHENG Hongkun, LI Jingjing, GONG Yuejiao, et al. Link mapping-oriented ant colony system for virtual network embedding[C]. 2017 IEEE Congress on Evolutionary Computation, San Sebastian, 2017: 1223–1230.
    TRIVISCONNO R, VAISHNAVI I, and GUERZONI R. Virtual links mapping in future SDN-enabled networks[C]. IEEE SDN for Future Networks and Services, Trento, 2013: 1–5.
    CHOWDHURY M, RAHMAN M R, and BOUTABA R. ViNEYard: Virtual network embedding algorithms with coordinated node and link mapping[J]. IEEE/ACM Transactions on Networking, 2012, 20(1): 206-219.
    GUERZONI R, DESPOTOVIC Z, and TRIVISONNO R. Modeling reliability requirements in coordinated node and link mapping[C]. IEEE 33rd International Symposium on Reliable Distributed Systems, Nara, 2014: 321–330.
    LONG Q, ASSI C, SHABAN K, et al. A Reliability-aware network service chain provisioning with delay guarantees in NFV-enabled enterprise datacenter networks[J]. IEEE Transactions on Network & Service Management, 2017, 14(3): 554-568. DOI: 10.1109/TNSM.2017.2723090.
    SHAHRIAR N, AHMED R, CHOWDHURY S, et al. Generalized recovery from node failure in virtual network embedding[J]. IEEE Transactions on Network and Service Management, 2017, 14(2): 261-274. DOI: 10.1109/TNSM.2017.2693404.
    HA V N and LONG B L. End-to-end network slicing in virtualized OFDMA-based cloud radio access networks[J]. IEEE Access, 2017, 5: 18675-18691.DOI: 10.1109/ACCESS.2017.2754461.
    唐伦, 张亚, 梁荣, 等.基于网络切片的网络效用最大化虚拟资源分配算法[J]. 电子与信息学报, 2017, 39(8): 1812-1818. DOI: 10.11999/JEIT161322.

    TANG Lun, ZHANG Ya, LIANG Rong, et al. Virtual resource allocation algorithm for network utility maximization based on network slicing[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1812-1818. DOI: 10.11999/JEIT161322.
    LI Kenli, TANG Xiaoyong, VEERAVALLI B, et al. Scheduling precedence constrained stochastic tasks on heterogeneous cluster systems[J]. IEEE Transactions on Computers, 2014, 64(1): 191-204. DOI: 10.1109/TC.2013.205
    CHEN Yu and ZHANG Hongwei. Optimal request clustering for link reliability guarantee in wireless networked control[C]. IEEE Wireless Communications and Networking Conference, San Francisco, 2017: 1–6.
    LIU Jiajia, JIANG Zhongyuan, KATO N, et al. Reliability evaluation for NFV deployment of future mobile broadband networks[J]. IEEE Wireless Communications, 2016, 23(3): 90-96. DOI: 10.1109/MWC.2016.7498079.
    CASCAVAL P and FLORIA S A. SDP algorithm for network reliability evaluation[C]. IEEE International Conference on Innovations in Intelligent Systems and Applications, Gdynia, 2017: 119–125.
    KANG Jinkyu, SIMEONE O, and KANG J. On the trade-off between computational load and reliability for network function virtualization[J]. IEEE Communications Letters, 2017, 21(8): 1767-1770. DOI: 10.1109/LCOMM.2017.2698040.
    SHUMINOSKI T and JANEVSKI T. Lyapunov optimization framework for 5g mobile nodes with multi-homing[J]. IEEE Communications Letters, 2016, 20(5): 1026-1029. DOI: 10.1109/LCOMM.2016.2540622.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1968
  • HTML全文浏览量:  939
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-28
  • 修回日期:  2018-05-09
  • 网络出版日期:  2018-06-07
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回