高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柱形抛物面天线的MIMO SAR研究

叶恺 禹卫东 徐伟 王伟

叶恺, 禹卫东, 徐伟, 王伟. 基于柱形抛物面天线的MIMO SAR研究[J]. 电子与信息学报, 2018, 40(8): 1816-1822. doi: 10.11999/JEIT171105
引用本文: 叶恺, 禹卫东, 徐伟, 王伟. 基于柱形抛物面天线的MIMO SAR研究[J]. 电子与信息学报, 2018, 40(8): 1816-1822. doi: 10.11999/JEIT171105
YE Kai, YU Weidong, XU Wei, WANG Wei. Investigation on Parabolic Cylinder Reflector Based MIMO SAR[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1816-1822. doi: 10.11999/JEIT171105
Citation: YE Kai, YU Weidong, XU Wei, WANG Wei. Investigation on Parabolic Cylinder Reflector Based MIMO SAR[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1816-1822. doi: 10.11999/JEIT171105

基于柱形抛物面天线的MIMO SAR研究

doi: 10.11999/JEIT171105
基金项目: 

国家重点研发计划(2017YFB0502700),国家自然科学基金(61701479)

Investigation on Parabolic Cylinder Reflector Based MIMO SAR

Funds: 

The National Key Research and Development Project (2017YFB0502700), The National Natural Science Foundation of China (61701479)

  • 摘要: 为了实现星载合成孔径雷达(SAR)的高分辨率宽测绘带成像,该文提出一种基于柱形抛物面天线的多发多收合成孔径雷达系统(MIMO SAR)。根据对系统结构和短偏移正交(STSO)发射波形的分析,该文给出该系统的具体处理方法。基于柱形抛物面天线易于在俯仰向形成高增益窄波束的优势,该系统能够利用数字波束形成技术对不同波形回波数据进行有效分离,从而获取更多的方位向等效相位中心。通过方位向多通道数据重构处理,成像场景回波数据可利用传统成像算法进行成像。仿真结果表明,该系统能够确保MIMO SAR的成像质量,并具有良好的成像性能。
  • CUMMING I and WONG F. Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005: 3-15.
    FREEMAN A, JOHNSON W, HUNEYCUTT B, et al. The myth of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320-324. doi: 10.1109/36.823926.
    SUESS M, GRAFMUELLER B, ZAHN R, et al. A novel high resolution, wide swath SAR system [C]. Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, 2001: 1013-1015.
    MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth's surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8-23. doi: 10.1109/MGRS.2015.2437353.
    RINCON R, FATOYINBO T, OSMANOGLU B, et al. Development of NASAs next generation L-band digital beamforming synthetic aperture radar (DBSAR-2)[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 1251-1254.
    HUBER S, VILLANO M, YOUNIS M, et al. Tandem-L: Design concepts for a next-generation Spaceborne SAR system[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 1237-1241.
    YOUNIS M, ALMEIDA F, LOPEZ-DEKKER P, et al. Techniques and modes for multi-channel SAR instruments [C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 812-817.
    TRIDON D, BACHMANN M, ZAN F, et al. Tandem-L observation concept-contributions and challenges of systematic monitoring of earth system dynamics[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017: 1-9.
    KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 91-96.
    LIU Feng, MU Shanxiang, LU Wanghan, et al. MIMO SAR waveform separation based on costas-LFM signal and co-arrays for maritime surveillance[J]. Chinese Journal of Electronics, 2017, 26(1): 211-217. doi: 10.1049/cje.2016.11. 015.
    YANG Dong, YANG Xi, TAN Xiaomin, et al. Ground moving target detection in MIMO-SAR system[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1062-1065.
    KIM J, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453-2466. doi: 10.1109/TGRS.2014.2360148.
    WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615-1625. doi: 10.1109/TGRS.2014.2346478.
    WANG Jie, CHEN Longyong, LIANG Xingdong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218-5228. doi: 10.1109/TGRS. 2015.2419271.
    WANG Jie, LIANG Xingdong, CHEN Longyong, et al. A novel space-time coding scheme used for MIMO-SAR systems [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556-1560. doi: 10.1109/LGRS.2015.2412961.
    JING Guobin, XING Mengdao, CHEN Jianlai, et al. A novel digital beam-forming (DBF) method for multi-modes MIMO SAR[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1-5.
    LI Taoyong, ZHANG Qun, WANG Kai, et al. A novel imaging method for airborne downward-looking 3D MIMO- SAR based on compressed sensing[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 5027-5030.
    LI Jian, STOICA P, and ZHENG Xiayu. Signal synthesis and receiver design for MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3959-3968. doi: 10.1109/TSP.2008.923197.
    KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46. doi: 10.1109/TGRS.2007.905974.
    KRIEGER G, HUBER S, VILLANO M, et al. SIMO and MIMO system architectures and modes for high-resolution ultra-wide-swath SAR imaging[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 187-192.
    KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628-2645. doi: 10.1109/TGRS.2013.2263934.
    VAN T H L. Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley Sons, 2002: 428-669.
  • 加载中
计量
  • 文章访问数:  1380
  • HTML全文浏览量:  119
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2018-04-13
  • 刊出日期:  2018-08-19

目录

    /

    返回文章
    返回