高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

物联网中基于相似性计算的传感器搜索

刘素艳 刘元安 吴帆 范文浩

刘素艳, 刘元安, 吴帆, 范文浩. 物联网中基于相似性计算的传感器搜索[J]. 电子与信息学报, 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085
引用本文: 刘素艳, 刘元安, 吴帆, 范文浩. 物联网中基于相似性计算的传感器搜索[J]. 电子与信息学报, 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085
Suyan LIU, Yuanan LIU, Fan WU, Wenhao FAN. Sensor Search Based on Sensor Similarity Computing in the Internet of Things[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085
Citation: Suyan LIU, Yuanan LIU, Fan WU, Wenhao FAN. Sensor Search Based on Sensor Similarity Computing in the Internet of Things[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085

物联网中基于相似性计算的传感器搜索

doi: 10.11999/JEIT171085
基金项目: 国家自然科学基金(61272518, 61502050),安全生产智能监控北京市重点实验室主任基金(北京邮电大学),广东省‘扬帆计划’引进创新创业团队项目
详细信息
    作者简介:

    刘素艳:女,1982年生,博士生,研究方向为物联网搜索、无线传感器网络

    刘元安:男,1963年生,教授,研究方向为电磁兼容、泛在无线网络

    吴帆:女,1981年生,副教授,研究方向为物联网搜索、泛在无线网络

    范文浩:男,1986年生,讲师,研究方向为移动设备、云计算

    通讯作者:

    刘素艳  153897455@qq.com

  • 中图分类号: TP393

Sensor Search Based on Sensor Similarity Computing in the Internet of Things

Funds: The National Natural Science Foundation of China (61272518, 61502050), The Beijing Key Laboratory Director Foundation of Work Safety Intelligent Monitoring (Beijing University of Posts and Telecommunications), The YangFan Innovative & Entrepreneurial Research Team Project of Guangdong Province
  • 摘要: 物联网逐渐成为学术界研究的热点领域,无处不在的传感器设备促进了传感器搜索服务的产生。物联网中搜索的强时空性、海量数据的异构性与传感器节点的资源受限性,给物联网搜索引擎高效地查询传感器提出了挑战。该文提出基于传感器定量数值的线性分段拟合相似性(PLSS)搜索算法。PLSS算法通过分段和线性拟合的方法,构建传感器定量数值的相似性计算模型,从而计算传感器的相似度,根据相似度查找最相似的传感器集群。与模糊集(FUZZY)算法和最小二乘法相比,PLSS算法平均查询精度和查询效率较高。与原数据相比,PLSS算法的存储开销至少降低了两个数量级。
  • 图  2  PLSS搜索流程

    图  1  物联网基于内容的传感器查询体系架构

    图  3  数据分段示意图

    图  4  Intel Berkeley传感器分布图

    图  5  查询准确度对比

    图  6  查询速度比较

    表  1  数据存储开销分析

    传感器1 传感器20 数据个数统计
    原数据
    (时间,传感器值)
    1317×2 2059×2 6.752×103
    FUZZY算法
    (传感器平均数据密度函数)
    16×4×10 20×4×10 2.400×103
    FUZZY算法
    (传感器平均数据斜率密度函数)
    10×4×10 14×4×10
    最小二乘多项式拟合算法
    (传感器函数系数)
    9 9 1.800×10
    PLSS算法
    (传感器函数系数)
    16 25 4.100×10
    下载: 导出CSV
  • BELLO O and ZEADALLY S. Intelligent device-to-device communication in the internet of things[J]. IEEE Systems Journal, 2016, 10(3): 1172–1182 doi: 10.1109/JSYST.2014.2298837
    EVANS D. The Internet of things: How the next evolution of the internet is changing everything[C]. Cisco Internet Business Solutions Group, San Francisco, USA, 2011.
    RIBEIRO M, GROLINGER K, and CAPRETZ M A M. MLaaS: Machine learning as a service[C]. 2015 IEEE 14th International Conference on Machine Learning and Applications., Miami, USA, 2015: 896–902.
    LI Shancang, LI Daxu, and ZHAO Shanshan. The internet of things: A survey[J]. Information Systems Frontiers, 2015, 17(2): 243–259 doi: 10.1007/s10796-014-9492-7
    张普宁. 面向物联网搜索服务的实体状态匹配估计方法研究[D]. [博士论文], 北京邮电大学, 2017.

    ZHANG Puning. Research on entity state matching estimation method towards search service in the internet of things[D]. [Ph.D. dissertation], Beijing University of Posts and Telecommunications, 2017.
    于海宁, 张宏莉, 方滨兴, 等. 物联网中物理实体搜索服务的研究[J]. 电信科学, 2012, 28(10): 111–119 doi: 10.3969/j.issn.1000-0801.2012.10.019

    YU Haining, ZHANG Hongli, FANG Binxing, et al. Research on search service for physical entities in the internet of things[J]. Telecommunications Science, 2012, 28(10): 111–119 doi: 10.3969/j.issn.1000-0801.2012.10.019
    WU Dapeng, HE Jing, WANG Hongguang, et al. A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks[J]. IEEE Communication Magazine, 2015, 53(8): 92–98 doi: 10.1109/MCOM.2015.7180514
    LI Dongsheng, ZHANG Wanxin, SHEN Siqi, et al. SES-LSH: Shuffle-efficient locality sensitive hashing for distributed similarity search[C]. 2017 IEEE 24th International Conference on Web Services, Honolulu, USA, 2017: 822–827.
    ZHAO Xujun, ZHANG Jifu, and QIN Xiao. kNN-DP: Handling data skewness in kNN joins using mapreduce[J].IEEE Transactions on Parallel and Distributed Systems, 2017, 29(3): 600–613 doi: 10.1109/TPDS.2017.2767596
    蒋翠清, 疏得友, 段锐. 基于用户时空相似性的位置推荐算法[J]. 计算机工程, 2018, 44(7): 177–182 doi: 10.19678/j.issn.1000-3428.0047996

    JIANG Cuiqing, SHU Deyou, and DUAN Rui. Location recommendation algorithm based on spatial-temporal similarity of user[J]. Computer Engineering, 2018, 44(7): 177–182 doi: 10.19678/j.issn.1000-3428.0047996
    张普宁, 刘元安, 吴帆, 等. 物联网中适用于内容搜索的实体状态匹配预测方法[J]. 电子与信息学报, 2015, 37(12): 2815–2820 doi: 10.11999/JEIT150191

    ZHANG Puning, LIU Yuanan, WU Fan, et al. An entity state matching prediction method for content-based search in the internet of things[J]. Journal of Electronics&Information Technology, 2015, 37(12): 2815–2820 doi: 10.11999/JEIT150191
    ELAHI B M, ROMER K, OSTERMAIER B, et al. Sensor ranking: A primitive for efficient content-based sensor search[C]. International Conference on Information Processing in Sensor Networks, San Francisco, USA, 2009: 217–228.
    ROMER K, OSTERMAIER B, OSTERMAIER F, et al. Real-time search for real-world entities: A survey[J]. Proceedings of the IEEE, 2010, 98(11): 1887–1902 doi: 10.1109/JPROC.2010.2062470
    ZHANG Puning, LIU Yanan, WU Fan, et al. Low-overhead and high-precision prediction model for content-based sensor search in the internet of things[J]. IEEE Communications Letters, 2016, 20(4): 720–723 doi: 10.1109/LCOMM.2016.2521735
    EBRAHIMI M, SHAFIEIBAVANI E, WONG R K, et al. An adaptive meta-heuristic search for the internet of things[J]. Future Generation Computer Systems, 2017, 76(11): 486–494.
    TRUONG C, ROMER K, and CHEN K. Fuzzy-based sensor search in the web of things[C]. 2012 3rd International Conference on the Internet of Things, Wuxi, China, 2012: 127–134.
    ZHUKOV V and KOMAROV M. Semantic control method of the internet of things based on linked open data[C]. 2017 IEEE 19th Conference on Business Informatics, Thessaloniki, Greece, 2017: 1–4.
    Intel Berkeley Research lab. Intel berkeley research lab sensors data[OL]. http://db.csail.mit.edu/labdata/labdata.html. 2004.10.
    DIAS G M, BELLALTA B, and OECHSNER S. A survey about prediction-based data reduction in wireless sensor networks[J]. ACM Computing Surveys, 2016, 49(3): 58.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1961
  • HTML全文浏览量:  783
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-20
  • 修回日期:  2018-09-12
  • 网络出版日期:  2018-09-20
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回