高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种自动匹配的分布式非圆信号二维DOA快速估计方法

崔维嘉 代正亮 王大鸣 李祥志

崔维嘉, 代正亮, 王大鸣, 李祥志. 一种自动匹配的分布式非圆信号二维DOA快速估计方法[J]. 电子与信息学报, 2018, 40(12): 2881-2888. doi: 10.11999/JEIT171058
引用本文: 崔维嘉, 代正亮, 王大鸣, 李祥志. 一种自动匹配的分布式非圆信号二维DOA快速估计方法[J]. 电子与信息学报, 2018, 40(12): 2881-2888. doi: 10.11999/JEIT171058
Weijia CUI, Zhengliang DAI, Daming WANG, Xiangzhi LI. Fast Two-dimensional DOA Estimation for Coherently Distributed Noncircular Signals with Automatic Pairing[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2881-2888. doi: 10.11999/JEIT171058
Citation: Weijia CUI, Zhengliang DAI, Daming WANG, Xiangzhi LI. Fast Two-dimensional DOA Estimation for Coherently Distributed Noncircular Signals with Automatic Pairing[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2881-2888. doi: 10.11999/JEIT171058

一种自动匹配的分布式非圆信号二维DOA快速估计方法

doi: 10.11999/JEIT171058
基金项目: 国家自然科学基金(61401513)
详细信息
    作者简介:

    崔维嘉:男,1976年生,博士,副教授,研究方向为移动通信、信号处理等

    代正亮:男,1993年生,硕士生,研究方向为阵列信号处理、分布式信号处理等

    王大鸣:男,1971年生,博士,讲师,研究方向为无线通信、信号处理等

    李祥志:男,1995年生,硕士生,研究方向为阵列信号处理

    通讯作者:

    代正亮  xinxidailiang@outlook.com

  • 中图分类号: TN911.7

Fast Two-dimensional DOA Estimation for Coherently Distributed Noncircular Signals with Automatic Pairing

Funds: The National Natural Science Foundation of China (61401513)
  • 摘要: 在相干分布式非圆信号2维波达方向(DOA)估计中,针对利用非圆特性后维数扩展带来的较大复杂度问题,且现有的低复杂度算法均需要额外的参数匹配,该文提出一种基于互相关传播算子的自动匹配2维DOA快速估计算法。该算法考虑L型阵列,在建立相干分布式非圆信号扩展阵列模型的基础上,首先证明了L阵中两个子阵的广义方向矢量(GSV)均具有近似旋转不变特性,然后通过阵列输出信号的互相关运算消除了额外噪声,最终利用子阵GSV的近似旋转不变关系通过传播算子方法得到中心方位角与俯仰角估计。理论分析和仿真实验表明,所提算法无须谱峰搜索和协方差矩阵特征分解运算,具有较低的计算复杂度,并且能够实现2维DOA估计的自动匹配;同时,相比于现有的相干分布式非圆信号传播算子算法,所提算法以较小的复杂度代价获得了性能的较大提升。
  • 图  1  L阵列与分布式信源

    图  2  2维DOA估计分布图

    图  3  不同算法2维DOA估计均方根误差RMSE随信噪比SNR变化

    图  4  不同算法2维DOA估计均方根误差RMSE随快拍数变化

    表  1  计算复杂度对比

    算法 计算量
    SOS $O\left(8{M^3} + 4{M^2}N + L({K^3} + 2{K^2}M)\right)$
    TLS-ESPRIT $O\left({(2M + 1)^3} + {(2M + 1)^2}N + 2M{K^2} + 2{K^3}\right)$
    CDNC $O\left(64{M^3} + 16{M^2}N + \left(\frac{{11}}{9}M - 4\right){K^2} + 2{K^3}\right)$
    NC-PM $O\left(2(4M - 1)KN + 2{K^3} + {K^2}\right)$
    本文算法 $O\left(4{M^2}N + 22{M^2}K + 3{K^3} - 12{K^2}\right)$
    下载: 导出CSV
  • ZHANG Ying and NG B P. MUSIC-Like DOA estimation without estimating the number of sources[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1668–1676 doi: 10.1109/TSP.2009.2037074
    樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO雷达目标多参数估计方法[J]. 电子与信息学报, 2015, 37(4): 933–938 doi: 10.11999/JEIT140826

    FAN Jinyu, GU Hong, SU Weimin, et al. Co-prime MIMO radar multi-parameter estimation based on tensor decomposition[J]. Journal of Electronics&Information Technology, 2015, 37(4): 933–938 doi: 10.11999/JEIT140826
    梁浩, 崔琛, 余剑. 基于ESPRIT算法的十字型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2016, 38(1): 80–89 doi: 10.11999/JEIT150402

    LIANG Hao, CUI Chen, and YU Jian. Reduced-dimensional DOA estimation based on ESPRIT algorithm in monostatic MIMO Radar with cross array[J]. Journal of Electronics&Information Technology, 2016, 38(1): 80–89 doi: 10.11999/JEIT150402
    冯明月, 何明浩, 徐璟, 等. 低信噪比条件下宽带欠定信号高精度DOA估计[J]. 电子与信息学报, 2017, 39(6): 1340–1347 doi: 10.11999/JEIT160921

    FENG Mingyue, HE Minghao, XU Jing, et al. High accuracy DOA estimation under low SNR condition for wideband underdetermined signals[J]. Journal of Electronics&Information Technology, 2017, 39(6): 1340–1347 doi: 10.11999/JEIT160921
    VALAEE S, CHAMPAGNE B, and KABAL P. Parametric localization of distributed sources[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2144–2153 doi: 10.1109/78.414777
    郑植. 分布式信源低复杂度参数估计算法研究[D]. [博士论文], 电子科技大学, 2011.

    ZHENG Zhi. Research on low complexity parameter estimation algorithm for distributed source[D]. [Ph.D. dissertation], University of Electronic Science and Technology, 2011.
    CAO Renzheng, GAO Feifei, and ZHANG Xiaofei. An angular parameter estimation method for incoherently distributed sources via generalized shift invariance[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4493–4503 doi: 10.1109/TSP.2016.2557312
    SHAHBAZPANAHI S, VALAEE S, and BASTANI M H. Distributed source localization using ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2169–2178 doi: 10.1109/78.950773
    LV Tiejun, TAN Fangqing, GAO Hui, et al. A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems[J]. Signal Processing, 2016, 121(C): 30–45 doi: 10.1016/j.sigpro.2015.10.020
    HASSANIEN A, SHAHBAZPANAHI S, and GERSHMAN A B. A generalized capon estimator for localization of multiple spread sources[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 280–283 doi: 10.1109/TSP.2003.820089
    SHAHBAZPANAHI S, VALAEE S, and GERSHMAN A B. A covariance fitting approach to parametric localization of multiple incoherently distributed sources[J]. IEEE Transactions on Signal Processing, 2004, 52(3): 592–600 doi: 10.1109/TSP.2003.822352
    SIESKUL B T. An asymptotic maximum likelihood for joint estimation of nominal angles and angular spreads of multiple spatially distributed sources[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1534–1538 doi: 10.1109/TVT.2009.2040006
    杨学敏, 李广军, 郑植. 基于稀疏表示的相干分布式非圆信号的参数估计[J]. 电子与信息学报, 2014, 36(1): 164–168 doi: 10.3724/SP.J.1146.2013.00444

    YANG Xuemin, LI Guangjun, and ZHENG Zhi. Parameters estimation of coherently distributed non-circular signal based on sparse representation[J]. Journal of Electronics&Information Technology, 2014, 36(1): 164–168 doi: 10.3724/SP.J.1146.2013.00444
    BOUJEMAA H. Extension of COMET algorithm to multiple diffuse source localization in azimuth and elevation[J]. European Transactions on Telecommunications, 2005, 16(6): 557–566 doi: 10.1002/ett.1021
    LEE J, SONG I, KWON H, et al. Low-complexity estimation of 2D DOA for coherently distributed sources[J]. Signal Processing, 2003, 83(8): 1789–1802 doi: 10.1016/S0165-1684(03)00103-8
    ZHENG Zhi, LI Guangjun, and TENG Yunlong. Simplified estimation of 2D DOA for coherently distributed sources[J]. Wireless Personal Communications, 2012, 62(4): 907–922 doi: 10.1007/s11277-010-0100-y
    尹洁昕, 吴瑛, 王鼎. 基于辅助阵元的非圆信号自校正算法及其性能分析[J]. 通信学报, 2014, 35(2): 153–165 doi: 10.3969/j.issn.1000-436x.2014.02.020

    YIN Jiexin, WU Ying, and WANG Ding. Auto-calibration method and performance analysis for noncircular sources based on instrumental sensors[J]. Journal on Communications, 2014, 35(2): 153–165 doi: 10.3969/j.issn.1000-436x.2014.02.020
    SHI Yunmei, HUANG Lei, QIAN Cheng, et al. Direction-of-arrival estimation for noncircular sources via structured least squares-based esprit using three-axis crossed array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1267–1278 doi: 10.1109/TAES.2015.140003
    YANG Xuemin, LI Guangjun, ZHENG Zhi, et al. 2D DOA estimation of coherently distributed noncircular sources[J]. Wireless Personal Communications, 2014, 78(2): 1095–1102 doi: 10.1007/s11277-014-1803-2
    DONG Yangyang, DONG Chunxi, XU Jin, et al. Computationally efficient 2-D DOA estimation for L-shaped array with automatic pairing[J]. IEEE Antennas&Wireless Propagation Letters, 2016, 15: 1669–1672 doi: 10.1109/LAWP.2016.2521785
    LUO Jun, ZHANG Guoping, and YU Kegen. An automatically paired two-dimensional direction-of-arrival estimation method for two parallel uniform linear arrays[J]. AEU-International Journal of Electronics and Communications, 2017, 72: 46–51 doi: 10.1016/j.aeue.2016.11.017
    YANG Xuemin, ZHENG Zhi, CHI C K, et al. Low-complexity 2D parameter estimation of coherently distributed noncircular signals using modified propagator[J]. Multidimensional Systems&Signal Processing, 2017, 28(2): 407–426 doi: 10.1007/s11045-015-0348-1
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1655
  • HTML全文浏览量:  562
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-14
  • 修回日期:  2018-09-26
  • 网络出版日期:  2018-10-16
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回