A Co-planar Waveguide Fed Dual Band-notched Tapered Slot Antenna
-
摘要: 为了滤除WIMAX(3.3~3.8 GHz)和WLAN(5.125~5.825 GHz)窄带信号对超宽带系统的干扰,该文提出一款共面波导馈电的小型化双陷波渐变槽天线。共面波导结构可以有效地扩展天线的带宽,实现对整个UWB(3.1~10.6 GHz)频段的全覆盖。通过在天线的馈线上开L型缝隙和在辐射贴片上开一对E字型缝隙的方法,有效实现了在3.15~3.97 GHz和4.94~6.05 GHz频段的双陷波特性,能够抑制WIMAX和WLAN对超宽带系统的干扰。该天线结构简单紧凑,尺寸非常小,仅为40 mm×18 mm×0.813 mm。仿真和实测结果表明该天线在超宽带波段内具有良好的陷波特性、增益特性,可以应用于小型化超宽带系统中。文中方法对于陷波渐变槽天线的研究具有一定的借鉴意义。Abstract: In order to filter out the interference of WIMAX (3.3~3.8 GHz) and WLAN (5.125~5.825 GHz) narrowband signals to Ultra WideBand(UWB) system, a Co-Planar Waveguide (CPW) fed miniaturized tapered slot antenna with dual band-notched characteristics is proposed. The CPW structure can effectively extend the bandwidth of the antenna and realize the full coverage of the whole UWB (3.1~10.6 GHz) frequency band. The dual band-notched characteristics (3.15~3.97 GHz and 4.94~6.05 GHz) are effectively achieved by etching the L-shaped slot in the antenna feeder and opening a pair of E-shaped slots in the radiating patch, which can inhibit WIMAX and WLAN interference to the UWB system. The antenna is simple and compact, and the size is very small, only 40 mm×18 mm×0.813 mm. The simulated and measured results show that the antenna has good notch and gain characteristics in the ultra wideband band, and can be used in miniaturized UWB system. The method has certain reference significance for the research of notched tapered slot antenna.
-
Key words:
- Tapered slot antenna /
- Co-Planar Waveguide (CPW) /
- Dual band-notched /
- Compact
-
表 1 优化后的天线单元参数
参数 数值(mm) 参数 数值(mm) L 18.0 W 40.0 L1 2.2 W1 11.0 L2 2.7 W2 3.4 L3 3.5 W3 3.8 L4 6.0 W4 8.5 L5 2.0 S 3.4 L6 4.2 d 3.0 表 2 与相关文献的对比
文献 尺寸(mm3) 工作频率(GHz) 陷波波段(GHz) 抑制增益(dB) [11] 39×38×0.813 3.05~10.3 5~6 15.0 [12] 50×50×0.8 2.4~11.2 4.6~6.2 13.5 [13] 50×50×0.8 3~11 4.3~5.4 3.8 [14] 43×40×0.508 3~11 5.125~5.350/5.725~5.825 10.0/7.6 [15] 66.3×66.3×0.813 3~11 3.6~3.9/5.6~5.8 7.0/5.4 [16] 50×50×0.8 2.4~11.6 3.1~4.0/5.1~6.2 7.5/10.0 [17] 57.4×55×1.524 3.3~10.8 4.17~4.37/6.0~6.8 —/10.5 本文 40×18×0.813 2.8~9.7 3.15~3.97/4.94~6.05 16.0/16.5 -
Federal Communications Commission. First report and order in the matter of revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems[R]. Technical Report ET-Docket 98–153. USA, Washington: FCC, 2002. SITU R P and SURYA P S. CPW-fed Flower shaped patch antenna for broadband applications[J]. Microwave and Optical Technology Letters, 2015, 57(12): 2908–2913. SHRIKANTH G R, ANIL K, SHILPA K, et al.. Cross-configured directional UWB antennas for multidirectional pattern diversity characteristics[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 853–858. DOI: 10.1109/TAP.2014.2382687 胡章芳, 胡银平, 罗元, 等. 具有陷波特性的改进Sierpinski分形超宽带天线[J]. 电子与信息学报, 2017, 39(6): 1520–1524. DOI: 10.11999/JEIT160738.HU Zhangfang, HU Yinping, LUO Yuan, et al.. Modified Sierpinskiactal UWB antenna with band-notched characteristic[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1520–1524. DOI: 10.11999/JEIT160738. ALI K H, ZAHRA S, JORDI N, et al.. Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3766–3776. DOI: 10.1109/TAP.2016.2585183. ANTHONY G, FRÉDÉRIC P, VUONG T P, et al.. Millimeter-wave air-filled SIW antipodal linearly tapered slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 768–771. DOI: 10.1109/LAWP.2016.2602280. 王友成, 董明宇, 张锋, 等. 渐变槽天线端射特性优化设计[J]. 电子与信息学报, 2017, 39(1): 124–128. DOI: 10.11999/JEIT160203WANG Youcheng, DONG Mingyu, ZHANG Feng, et al.. Design of tapered-slot antenna with optimized end-fire characteristics[J]. Journal of Electronics & Information Technology, 2017, 39(1): 124–128. DOI: 10.11999/JEIT160203. AREZOOMAND A S, SADEGHZADEH R A, and MOGHADASI M N. Novel techniques in tapered slot antenna for linearity phase center and gain enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 270–273. DOI: 10.1109/LAWP.2016.2572064. KAZUTAKA K and AKIRA H. Compact folded-fin tapered slot antenna for UWB applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1192–1195. DOI: 10.1109/LAWP.2015.2397008. YAO Yuan, CHENG Xiaohe, and YU Junsheng. Analysis and design of a novel circularly polarized antipodal linearly tapered slot antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4178–4187. DOI: 10.1109/TAP.2016.2593870. ZHU Fuguo, STEVEN G, ANTHONY T S, et al.. Miniaturized tapered slot antenna with signal rejection in 5–6 GHz band using a balun[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 507–510. DOI: 10.1109/LAWP.2012.2199276. LEE D H, YANG H Y, and CHO Y K. Tapered slot antenna with band-notched function for ultra wideband radios[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 682–685. DOI: 10.1109/LAWP.2012.2204718. BHASKAR M, JOHARI E, AKHTER Z, et al.. Gain enhancement of the vivaldi antenna with band notch characteristics using zero-index metamaterial[J]. Microwave and Optical Technology Letters, 2016, 58(1): 233–238. DOI: 10.1002/mop.29534. ZHU Fuguo, STEVEN G, ANTHONY T S, et al.. Dual band-notched tapered slot antenna using λ/4 band-stop filters[J]. IET Microwaves, Antennas and Propagation, 2012, 6(15): 1665–1673. DOI: 10.1049/iet-map.2012.0502. ALSHAMAILEH K A, ALMALKAWI M T, and DEVABHAKTUNI V K. Dual band-notched microstrip fed vivaldi antenna utilizing compact EBG structures[J]. International Journal of Antennas and Propagation, 2015, 439832: 1–7. LEE D H, HAE Y Y, and CHO Y K. Ultra-wideband tapered slot antenna with dual band-notched characteristics[J]. IET Microwaves, Antennas and Propagation, 2014, 8(1): 29–38. DOI: 10.1049/iet-map.2013.0116. CHINMOY S, PRIYANKA N, LATHEEF A, et al.. Square/hexagonal split ring resonator loaded exponentially tapered slot ultra wideband(UWB) antenna with frequency notch characteristics[J]. Microwave and Optical Technology Letters, 2017, 59(6): 1241–1245. DOI: 10.1002/mop.30511.