高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无迹卡尔曼滤波估计的无线传感器网络时钟分辨率优化

何灏 易卫东 陈永锐 王喆

何灏, 易卫东, 陈永锐, 王喆. 基于无迹卡尔曼滤波估计的无线传感器网络时钟分辨率优化[J]. 电子与信息学报, 2019, 41(3): 687-693. doi: 10.11999/JEIT171049
引用本文: 何灏, 易卫东, 陈永锐, 王喆. 基于无迹卡尔曼滤波估计的无线传感器网络时钟分辨率优化[J]. 电子与信息学报, 2019, 41(3): 687-693. doi: 10.11999/JEIT171049
Hao HE, Weidong YI, Yongrui CHEN, Zhe WANG. WSN Timer Resolution Adjustment Based on UKF Approach[J]. Journal of Electronics & Information Technology, 2019, 41(3): 687-693. doi: 10.11999/JEIT171049
Citation: Hao HE, Weidong YI, Yongrui CHEN, Zhe WANG. WSN Timer Resolution Adjustment Based on UKF Approach[J]. Journal of Electronics & Information Technology, 2019, 41(3): 687-693. doi: 10.11999/JEIT171049

基于无迹卡尔曼滤波估计的无线传感器网络时钟分辨率优化

doi: 10.11999/JEIT171049
基金项目: 国家科技支撑计划(Y2140161A5),国家863计划(O812041A04)
详细信息
    作者简介:

    何灏:男,1987年生,博士生,研究方向为无线传感器网络、图像处理

    易卫东:男,1959年生,教授,研究方向为物联网技术

    陈永锐:男,1978年生,副教授,研究方向为无线传感器网络、跨技术通信

    王喆:女,1992年生,硕士生,研究方向为无线传感器网络

    通讯作者:

    何灏 hehao_12@163.com

  • 中图分类号: TN393

WSN Timer Resolution Adjustment Based on UKF Approach

Funds: The National Science and Technology Support Program (Y2140161A5), The National 863 Program of China (O812041A04)
  • 摘要:

    在无线传感器网络(WSN)节点的无线电关闭期间,用以维护系统时钟的硬件定时器中断请求(IRQ)是微控制单元(MCU)能耗的重要来源,此时中断频率对WSN节点总能耗影响较大。该文提出一种基于无迹卡尔曼滤波(UKF)估计的时钟分辨率优化方法,根据协议的时间特性来切换中断高低频率。在休眠期间切换到低分辨率,需要唤醒时先通过UKF获得高分辨率计时开始时间的最优估计,再通过分辨率渐变的定时器中断的线性组合来进入高分辨率计时。对Tmote平台的ContikiMAC协议进行的仿真实验中,在无线电占空比(RDC)为0.53%的情况下,所提方法比原始协议总能耗下降28.85%。

  • 图  1  使用硬件定时器中断周期性更新操作系统软件时钟

    图  2  不同时段的高低分辨率切换

    图  3  前置切换时间

    图  4  前置切换时间的不同定时器中断模式

    图  5  ContikiMAC不同LR时的能耗

    图  6  ContikiMAC不同唤醒次数的能耗

    图  7  ContikiMAC不同发包间隔的能耗

    图  8  ContikiMAC不同RDC的能耗

    表  1  不同中断频率时,Tmote-sky的MCU在待机状态的流耗

    定时器IRQ频率(Hz)时钟分辨率(ms)MCU流耗(μA)
    10241130
    512268
    128822
    16648
    110006
    下载: 导出CSV

    表  2  实验参数

    实验HR频率(Hz)LR频率(Hz)唤醒次数n发包间隔(s)RDC(%)
    不同低分辨率10244, 8, 16, 32, 64, 128, 25624
    不同唤醒次数1024322, 4, 6, 8, 10, 124
    不同发包间隔10241612, 4, 6, 8, 10, 12, 14, 16
    不同RDC1024160.53, 1.07, 2.14, 4.27, 8.55
    下载: 导出CSV
  • DJIROUN F Z and DJENOURI D. MAC protocols with wake-up radio for wireless sensor networks: A review[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1): 587–618. doi: 10.1109/COMST.2016.2612644
    OLLER J, DEMIRKOL I, CASADEMONT J, et al. Has time come to switch from duty-cycled mac protocols to wake-up radio for wireless sensor networks?[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 674–687. doi: 10.1109/TNET.2014.2387314
    DUQUENNOY S, ELSTS A, NAHAS B A, et al. TSCH and 6TiSCH for Contiki: Challenges, design and evaluation[C]. International Conference on Distributed Computing in Sensor Systems, New York, USA, 2018: 11–18.
    PANTAZIS N A and VERGADOS D D. A survey on power control issues in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2007, 9(4): 86–107. doi: 10.1109/COMST.2007.4444752
    ZHURAVLEV S, SAEZ J C, BLAGODUROV S, et al. Survey of energy-cognizant scheduling techniques[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24(7): 1447–1464. doi: 10.1109/TPDS.2012.20
    AKRAM S, SARTOR J B, and EECKHOUT L. DVFS performance prediction for managed multithreaded applications[C]. IEEE International Symposium on PERFORMANCE Analysis of Systems and Software, Uppsala, Sweden, 2016: 12–23.
    VARTZIOTIS F, KAVOUSIANOS X, CHAKRABARTY K, et al. Time-division multiplexing for testing DVFS-based SoCs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(4): 668–681. doi: 10.1109/TCAD.2015.2394462
    LI Xin and LIU Qiang. Multi-time-segment dynamic power management for environmentally embedded systems[J]. Journal of Xian Jiaotong University, 2017, 51(1): 147–152. doi: 10.7652/xjtuxb201701023
    GUTNIK V and CHANDRAKASAN A P. Embedded power supply for low-power DSP[J]. IEEE Transactions on Very Large Scale Integration Systems, 1997, 5(4): 425–435. doi: 10.1109/92.645069
    CHEN Yongrui, YI Weidong, SUN Hao, et al. Tunable time resolution: An energy saving mechanism for wireless sensor networks[J]. IEEE Communications Letters, 2015, 19(7): 1201–1204. doi: 10.1109/LCOMM.2015.2430858
    YAN Yan, OSWALD E, and TRYFONAS T. Cryptographic randomness on a CC2538: A case study[C]. IEEE International Workshop on Information Forensics and Security, Rennes, France, 2016: 1–6.
    ZHENG Kan, WANG Huijian, LI Hang, et al. Energy-efficient localization and tracking of mobile devices in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2714–2726. doi: 10.1109/TVT.2016.2584104
    WU Yafeng, LIU K S, STANKOVIC J A, et al. Efficient multichannel communications in wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2016, 12(1): 1–23. doi: 10.1145/2840808
    DUNKELS A, GRONVALL B, and VOIGT T. Contiki — A lightweight and flexible operating system for tiny networked sensors[C]. IEEE International Conference on Local Computer Networks, Tampa, USA, 2004: 455–462.
    RAZA S, MISRA P, HE Zhitao, et al. Building the internet of things with bluetooth smart[J]. Ad Hoc Networks, 2017, 57: 19–31. doi: 10.1016/j.adhoc.2016.08.012
    WANG Gang, CHEN Hongyang, LI Youming, et al. On received-signal-strength based localization with unknown transmit power and path loss exponent[J]. IEEE Wireless Communications Letters, 2012, 1(5): 536–539. doi: 10.1109/WCL.2012.072012.120428
    WANG Jie, GAO Qinghua, WANG Hongyu, et al. Robust tracking algorithm for wireless sensor networks based on improved particle filter[J]. Wireless Communications & Mobile Computing, 2012, 12(10): 891–900. doi: 10.1002/wcm.1024
    CHEN Hongyang, GAO Feifei, MARTINA M, et al. Accurate and efficient node localization for mobile sensor networks[J]. Mobile Networks & Applications, 2013, 18(1): 141–147. doi: 10.1007/s11036-012-0361-7
    CHEN Hongyang, LIU Bin, HUANG Pei, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks & Applications, 2012, 17(1): 90–99. doi: 10.1007/s11036-010-0281-3
    CHEN Hongyang, SHI Qingjiang, TAN Rui, et al. Mobile element assisted cooperative localization for wireless sensor networks with obstacles[J]. IEEE Transactions on Wireless Communications, 2010, 9(3): 956–963. doi: 10.1109/TWC.2010.03.090706
    CHEN Hongyang, WANG Gang, WANG Zizhuo, et al. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108–116. doi: 10.1109/TWC.2011.110811.101739
    CHEN Hongyang and SEZAKI K. Distributed target tracking algorithm for wireless sensor networks[C]. IEEE International Conference on Communications, Kyoto, Japan, 2011: 1–5.
    EMAMI K, FERNANDO T, IU H C, et al. Application of unscented transform in frequency control of a complex power system using noisy PMU data[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 853–863. doi: 10.1109/TII.2015.2491222
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1513
  • HTML全文浏览量:  590
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-13
  • 修回日期:  2018-12-19
  • 网络出版日期:  2018-12-24
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回