高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Teager能量算子和经验模态分解的语音端点检测算法

沈希忠 郑晓修

沈希忠, 郑晓修. 基于Teager能量算子和经验模态分解的语音端点检测算法[J]. 电子与信息学报, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014
引用本文: 沈希忠, 郑晓修. 基于Teager能量算子和经验模态分解的语音端点检测算法[J]. 电子与信息学报, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014
SHEN Xizhong, ZHENG Xiaoxiu. Teager Energy Operator and Empirical Mode Decomposition Based Voice Activity Detection Method[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014
Citation: SHEN Xizhong, ZHENG Xiaoxiu. Teager Energy Operator and Empirical Mode Decomposition Based Voice Activity Detection Method[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014

基于Teager能量算子和经验模态分解的语音端点检测算法

doi: 10.11999/JEIT171014
基金项目: 

上海市科委基金(15ZR1440700)

详细信息
    作者简介:

    沈希忠: 男,1968年生,教授,研究方向为信号处理. 郑晓修: 男,1989年生,硕士生,研究方向为信号检测技术.

  • 中图分类号: TP391.42

Teager Energy Operator and Empirical Mode Decomposition Based Voice Activity Detection Method

Funds: 

Foundation of Shanghai Science and Technology Commission of Shanghai Municipality (15ZR1440700)

  • 摘要: Teager能量算子是近年来提出的非线性方法,具有跟踪时变信号的特点,该文结合该算子和经验模态分解方法,提出一种新的语音端点检测算法,用于寻找合理的语音起始和终止端点。该算法利用经验模态分解,提出本征模态函数的有效性筛选条件,通过筛选本征模态函数,使得该算法能够处理含噪语音信号,同时分解所得单模态特性正好满足TEO算子对单成份能量跟踪的要求,最后利用Hilbert变换解决了可能存在的模态混叠问题。经过这些处理,算法能够处理语音信号中清音段的端点标识,比直接TEO、双门限法效果好。通过大量实验验证了该算法的有效性。
  • [2] KUMAR J and JENA P. Solution to fault detection during power swing using Teager-Kaiser Energy Operator[J]. Arabian Journal for Science and Engineering, 2017, 42(12): 5003-5013.
    胡航. 现代语音信号处理[M]. 北京: 电子工业出版社, 2014: 30-48.
    [3] BHOWMICK A, CHANDRA M, and BISWAS A. Speech enhancement using Teager energy operated ERB-like perceptual wavelet packet decomposition[J]. International Journal of Speech Technology, 2017(4): 1-15.
    HAN Xiaohuan and JING Xinxing.  Speech endpoint detection based on power spectrum diference and Teager energy operator[J]. Computer Application and Software, 2011, 28(4): 82-83.
    LI Jie, ZHOU Ping, and DU Zhiran.  Application of short-time TEO energy in noisy speech endpoint[J].  Computer Engineering and Applications, 2013, 49(12): 144-147. doi: 10.3778/j.issn.1002-8331.1110-0479.
    WANG Maorong, ZHOU Ping, JING Xinxing, et al. Voice activity detection algorithm based on Mel-TEO in noisy environment[J].  Microelectronics & Computer, 2016, 33(4): 46-49. doi: 10.19304/j.cnki.issn1000-7180.2016.04.010.
    WANG Minghe, ZHANG Erhua, TANG Zhenmin, et al.  Voice activity detection based on Fisher linear discriminant analysis[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1343-1349. doi: 10.11999/JEIT141122.
    LI Ye, ZHANG Renzhi, CUI Huijuan, et al. Voice activity detection with low signal-to-noise rations based on the spectrum entropy[J].  Journal of Tsinghua University (Science and Technology), 2005, 45(10): 1397-1440.
    LIU Huan, WANG Jun, LIN Qiguang, et al.  A novel speech activity detection algorithm based on the fusion of time and frequency domain features[J].  Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2017, 31(1): 73-78. doi: 10.3969/j.issn.1673-4807.2017.01.014.
    [10] WAN Yulong, WANG Xianliang, ZHOU Ruohua, et al.  Enhanced voice activity detection based on automatic segmentation and event classification[J].  Journal of Computational Information Systems, 2014, 10(10): 4169-4177.
    [11] GHOSH P K, TSIARTAS A, and NARAYANAN S.  Robust voice activity detection using long-term signal variability[J].  IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(3): 600-613.
    LU Zhimao, JIN Hui, ZHANG Chunxiang, et al. Voice activity detection in complex environment based on Hilbert-Huang transform and order statistics filter[J].  Journal of Electronics & Information Technology, 2012, 34(1): 213-217. doi: 10.3724/SP.J.1146.2011.0047.
    [13] CHOI Jaehun and CHANG Joonhyuk. Dual-microphone voice activity detection technique based on two-step power level difference ratio[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(6): 1069-1081.
    [14] TEAGER H and TEAGER S. Evidence for Nonlinear Sound Production Mechanisms in the Vocal Tract[M]. Springer, 1990: 241-261.
    [15] KAISER J F. On a simple algorithm to calculate the energy of a signal[C]. IEEE International Conference on Acoustics, New York, USA, 1990: 381-384.
    [16] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995.
    [17] KIRBAS I and PEKER M. Signal detection based on empirical mode decomposition and Teager-Kaiser energy operator and its application to P and S wave arrival time detection in seismic signal analysis[J]. Neural Computing and Applications, 2017, 28(10): 3035-3045.
    ZHENG Jinde, CHENG Junsheng, and YANG Yu. Modified EEMD algorithm and its application[J]. Journal of Vibration and Shock, 2013, 32(21): 21-26.
  • 加载中
计量
  • 文章访问数:  1654
  • HTML全文浏览量:  276
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2018-04-11
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回