高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高频角位移数据的卫星平台颤振检测与影像几何质量补偿

胡堃 黄旭 张永军 尤红建

胡堃, 黄旭, 张永军, 尤红建. 基于高频角位移数据的卫星平台颤振检测与影像几何质量补偿[J]. 电子与信息学报, 2018, 40(7): 1525-1531. doi: 10.11999/JEIT170990
引用本文: 胡堃, 黄旭, 张永军, 尤红建. 基于高频角位移数据的卫星平台颤振检测与影像几何质量补偿[J]. 电子与信息学报, 2018, 40(7): 1525-1531. doi: 10.11999/JEIT170990
HU Kun, HUANG Xu, ZHANG Yongjun, YOU Hongjian. Satellite Platform Jitter Detection and Image Geometric Quality Compensation Based on High-frequency Angular Displacement Data[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1525-1531. doi: 10.11999/JEIT170990
Citation: HU Kun, HUANG Xu, ZHANG Yongjun, YOU Hongjian. Satellite Platform Jitter Detection and Image Geometric Quality Compensation Based on High-frequency Angular Displacement Data[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1525-1531. doi: 10.11999/JEIT170990

基于高频角位移数据的卫星平台颤振检测与影像几何质量补偿

doi: 10.11999/JEIT170990
基金项目: 

国家自然科学基金(41701539, 41701540),北京市自然科学基金(4184107),国家留学基金(201704910279)

详细信息
    作者简介:

    胡堃:胡 堃: 男,1986年生,助理研究员,博士,研究方向为高分辨率光学卫星数据的精准处理、综合分析与质量评价. 黄 旭: 男,1987年生,工程师,博士,研究方向为多视航空和近景影像的密集匹配与3维重建. 张永军: 男,1975年生,教授,博士生导师,研究方向为航天航空和低空摄影测量、影像匹配与3维城市重建. 尤红建: 男,1969年生,研究员,博士生导师,研究方向为SAR影像的几何精校正、遥感影像的精配准与变换检测.

  • 中图分类号: P236

Satellite Platform Jitter Detection and Image Geometric Quality Compensation Based on High-frequency Angular Displacement Data

Funds: 

The National Natural Science Foundation of China (41701539, 41701540), The Beijing Natural Science Foundation (4184107), The China Scholarship Council (201704910279)

  • 摘要: 随着对地观测卫星成像分辨率和在轨机动性能的提升,卫星平台姿态的高频颤振对成像几何质量的影响更加显著。鉴于传统的基于分时成像数据的颤振检测和补偿方法具有密集匹配计算量大,误差干扰程度高和无法分解各旋角方向的颤振量等缺点。该文以国产遥感系列光学卫星搭载的高频角位移设备为例,研究基于角位移高频测姿数据的直接颤振检测方法和影像几何质量补偿方法。其中包括角位移数据的加窗FIR滤波预处理,在俯仰、翻滚和偏航方向随时间变化的颤振曲线分布规律分析,以及基于角位移数据的影像直接定位补偿。将高频颤振补偿应用于卫星平台的姿态复原和基于严格成像几何模型的几何纠正解算。采用北京地区遥感系列光学卫星数据的实验结果表明,该文方法能够显著地改善高频颤振检测的精度和可靠性,有效地提高颤振补偿后卫星影像的内部几何质量,其中长度变形精度提高了0.5个像素左右。
  • 刘光林, 杨世洪, 吴钦章. 一种基于CCD多电极结构的电子像移补偿方法[J]. 光电子激光, 2008, 19(7): 974-951.

    doi: 10.3321/j.issn:1005-0086.2008.07.024.
    LIU Guanglin, YANG Shihong, and WU Qinzhang. An image motion compensation method based on multiphase CCD[J]. Journal of OptoelectronicsLaser, 2008, 19(7): 947-951. doi: 10.3321/j.issn:1005-0086.2008.07.024.
    SHI Junxia, XUE Xucheng, and GUO Yongfei. Effect of satellite vibration on imaging quality of TDICCD camera and compensation method[J]. Opto-Electronic Engineering, 2010, 37(12): 11-16. doi: 10.3969/j.issn.1003-501X.2010.12.003.
    XU Boqian. Study on image compensation technology for spaceborne cameras under micro-vibration circumstances[D]. [Ph.D. dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.
    FAN Chao, LI Yingcai, and YI Hongwei. Influence analysis of buffeting on image quality of TDICCD camera[J]. Acta Photonica Sinica, 2007, 36(9): 1714-1717.
    SUN Yang. On-orbit platform jitter effect on image quality of high-resolution remote sensor[D]. [Ph.D. dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013.
    ZHU Ying, WANG Mi, PAN Jun, et al. Detection of ZY-3 satellite platform jitter using multi-spectral imagery[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 399-406. doi: 10.11947/j.AGCS.2015.20140024.
    [7] SUDEY JR J and SCHULMAN J R. In-orbit measurements of Landsat-4 thematic mapper dynamic disturbances[J]. Acta Astronautica, 1985, 12(7/8): 485-503. doi: 10.1016/0094- 5765(85)90119-5.
    LIU Hailong. Space camera vibration parameters detection and blurred image restoration[D]. [Ph.D. dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.
    [9] TIMONER S J and FREEMAN D M. Multi-image gradient based algorithms for motion estimation[J]. Optical Engineering, 2001, 40(9): 2003-2016. doi: 10.1117/1.1391495.
    [10] GADI H, YITZHAK Y, KOPEIKA N S, et al. Restoration of images captured by a staggered time-delay and integration camera in the presence of mechanical vibrations[J]. Applied Optics, 2004, 43(22): 4345-4354. doi: 10.1364/AO.43.004345.
    [11] HAIK O and YITZHAKY Y. Superresolution reconstruction of a video captured by a vibrated time delay and integration camera[J]. Journal of Electronic Imaging, 2006, 15(2): 113-128. doi: 10.1117/1.2194042.
    [12] ROQUES S, JAHAN L, ROUGE B, et al. Satellite attitude instability effects on stereo images[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, 2004, 3: 477-480. doi: 10.1109/ ICASSP.2004.1326585.
    [13] AMBERG V, DECHOZ C, BERNARD L, et al. In-flight attitude perturbances estimation: Application to PLEIADES-HR satellites[C]. Proceedings of the International Society for Optical Engineering, San Diego, 2013, 8866: 886612. doi: 10.1117/12.2023275.
    [14] TONG Xiaohua, LI Lingyun, LIU Shijie, et al. Detection and estimation of ZY-3 three-line array image distortions caused by attitude oscillation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 291-309. doi: 10.1016/ j.isprsjprs.2015.01.003.
    [15] TONG Xiaohua, XU Yusheng, YE Zhen, et al. Attitude oscillation detection of the ZY-3 satellite by using multispectral parallax images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3522-3534. doi: 10.1109/TGRS.2014.2379435.
    SUN Tao, LONG Hui, ZHAO Dong, et al. Detection and compensation of satellite flutter based on image from multispectral camera with five spectral combinations[J]. Acta Optica Sinica, 2014, 34(7): 276-282. doi: 10.3788/AOS201434. 0728005.
    [17] JIANG Yonghua, ZHANG Guo, TANG Xinming, et al. Detection and correction of relative attitude errors for ZY1-02C[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7674-7683. doi: 10.1109/TGRS.2014. 2316419.
    TAN Tianle, ZHU Chunyan, ZHU Dongfang, et al. Overview of micro-vibration testing, isolation and suppression technology for spacecraft[J]. Aerospace Shanghai, 2014, 31(6): 36-45. doi: 10.19328/j.cnki.1006-1630.2014.06.009.
    [19] TOYOSHIMA M and ARAKI K. In-orbit measurements of short term attitude and vibrational environment on the engineering test satellite VI using laser communication equipment[J]. Optical Engineering, 2001, 40(5): 827-832. doi: 10.1117/1.1355976.
    HUO Hongqing, MA Mianjun, LI Yunpeng, et al. High precision measurement technology of satellite’s angle micro vibration[J]. Transducer and Microsystem Technologies, 2011, 30(3): 4-6. doi: 10.13873/j.1000-97872011.03.015.
    WANG Zeyu, ZOU Yuanjie, JIAO Anchao, et al. The jitter measurement and analysis for a remote sensing satellite platform[J]. Spacecraft Environmente Engineering, 2015, 32(3): 278-285. doi: 10.3969/j.issn.1673-1379.2015.03.010.
    XU Bin, LEI Bin, FAN Chengcheng, et al. A high-frequency angular displacement based internal geometric accuracy compensation method for high-resolution optical satellite images[J]. Acta Optica Sinica, 2016, 36(9): 293-300. doi: 10.3788/aos201636.0928002.
  • 加载中
计量
  • 文章访问数:  1154
  • HTML全文浏览量:  218
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 修回日期:  2018-04-12
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回