BASHBAGHI S, GRANGER E, SABOURIN R, et al. Dynamic ensembles of exemplar-SVMs for still-to-video face recognition[J]. Pattern Recognition, 2017, 69(C): 61-81. doi: 10.1016/j.patcog.2017.04.014.
|
LIU Jiachen, MIAO Qiguang, CAO Ying, et al. Ensemble one-class classifiers based on hybrid diversity generation and pruning[J]. Journal of Electronics & Information Technology, 2015, 37(2): 386-393. doi: 10.11999/JEIT140161.
|
[3] LI Kai, XING Junliang, HU Weiming, et al. D2C: Deep cumulatively and comparatively learning for human age estimation[J]. Pattern Recognition, 2017, 66(6): 95-105. doi: 10.1016/j.patcog.2017.01.007.
|
[4] LU Huijuan, AN Chunlin, ZHENG Enhui, et al. Dissimilarity based ensemble of extreme learning machine for gene expression data classification[J]. Neurocomputing, 2014, 128(5): 22-30. doi: 10.1016/j.neucom.2013.02.052.
|
YANG Chun, YIN Xucheng, HAO Hongwei, et al. Classifier ensemble with diversity: Effectiveness analysis and ensemble optimization[J]. Acta Automatica Sinica, 2014, 40(4): 660-674. doi: 10.3724/SP.J.1004.2014.00660.
|
[6] YKHLEF H and BOUCHAFFRA D. An efficient ensemble pruning approach based on simple coalitional games[J]. Information Fusion, 2017, 34(C): 28-42. doi: 10.1016/j.inffus. 2016.06.003.
|
[7] ZHOU Zhihua, WU Jianxin, and TANG Wei. Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137(1): 239-263. doi: 10.1016/S0004- 3702(02)00190-X.
|
[8] MARTÍNEZ-MUÑOZ G, HERNANDEZ LOBATO D, and SUAREZ A. An analysis of ensemble pruning techniques based on ordered aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 245-259. doi: 10.1109/TPAMI.2008.78.
|
[9] GUO Li and BOUKIR S. Margin-based ordered aggregation for ensemble pruning[J]. Pattern Recognition Letters, 2013, 34(6): 603-609. doi: 10.1016/j.patrec.2013.01.003.
|
[10] DAI Qun, ZHANG Ting, and LIU Ningzhong. A new reverse reduce-error ensemble pruning algorithm[J]. Applied Soft Computing, 2015, 28(3): 237-249. doi: 10.1016/j.asoc.2014. 10.045.
|
[11] ROKACH L. Collective-agreement-based pruning of ensembles[J]. Computational Statistics and Data Analysis, 2009, 53(4): 1015-1026. doi: 10.1016/j.csda.2008.12.001.
|
[12] LAZAREVIC A and OBRADOVIC Z. Effective pruning of neural network classifier ensembles[C]. International Joint Conference on Neural Networks, Washington DC, USA, 2001: 796-801. doi: 10.1109/IJCNN.2001.939461.
|
[13] GIACINTO G, ROLI F, and FUMERA G. Design of effective multiple classifier systems by clustering of classifiers[C]. International Conference on Pattern Recognition, Barcelona, Spain, 2000: 160-163. doi: 10.1109/ICPR.2000.906039.
|
[14] BAKKER B and HESKES T. Clustering ensembles of neural network models[J]. Neural Network, 2003, 16(2): 261-269. doi: 10.1016/S0893-6080(02)00187-9.
|
[15] ZHOU Hongfang, ZHAO Xuehan, and WANG Xiao. An effective ensemble pruning algorithm based on frequent patterns[J]. Knowledge-Based Systems, 2014, 56(C): 79-85. doi: 10.1016/j.knosys.2013. 10.024.
|
[16] CAVALCANTI G D C, OLIVEIRA L S, NOURA T J M, et al. Combining diversity measures for ensemble pruning[J]. Pattern Recognition Letters, 2016, 74(C): 38-45. doi: 10.1016 /j.patrec.2016.01.029.
|
NI Zhiwei, ZHANG Chen, and NI Liping. Haze forecast method of selective ensemble based on glowworm swarm optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 143-153. doi: 10.16451/j.cnki. issn1003-6059.201602006.
|
[18] MARINAKI M and MARINAKI Y. A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands[J]. Expert Systems with Applications, 2016, 46(C): 145-163. doi: 10.1016/j.eswa.2015.10.012.
|
[19] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. doi: 10.1023/A:1018054314350.
|
[20] SINGHAL P K, NARESH R, and SHARMA V. Binary fish swarm algorithm for profit-based unit commitment problem in competitive electricity market with ramp rate constraints [J]. IET Generation, Transmission & Distribution, 2015, 9(13): 1697-1707. doi: 10.1049/iet-gtd.2015.0201.
|